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1.0 INTRODUCTION 

1.1 BACKGROUND 

EydrzC-eeLogir developed and verified a robust numerical flow and transport modeling code for 
Fernald Environmental Management Project (FEMP) as Phase I of work for the development of 
aquifer restoration management support tools. The work of Phase I involved customizing a 
HydroGeoLogic code to provide specific simulation capabilities for the simulation of groundwater 
flow and mass transport in the Great Miami Aquifer (GMA) at the Fernald Environmental 
Management Project (FEMP) . Specific customization included: kinetic contaminant mass transfer 
between liquid and solid phases , a multi-dispersivity model, and the Total Variation Diminishing 
(TVD) solution to accommodate high groundwater velocity in the vicinity of the 
extractionhnjection wells. The HydroGeoLogic code that was customized was the Variably 
Saturated Analysis Model in 3-Dimensions for the Data Fusion System (VAM3DF) 
(HydroGeoLogic, 1995). The goal was to provide a transport simulator that can handle Fernald 
Environmental Management Project (FEMP) specific conditions and is efficient enough for Data 
Fusion Modeling (DFM). 

In Phase 11, the integration of DFM with the VAM3DF contaminant transport code was 
accomplished for the calibration of VAM3DF transport parameters and the performance of 
transport prediction. It is anticipated that Phase I11 will provide tools to optimize monitoring and 
remediation and that Phase IV will provide technology transfer. 

Phase I1 is the linchpin of support tool development because it is in this phase that all the relevant 
site information comes together. Phase I1 uses the VAM3DF code developed in Phase I and 
provides the basis for model predictions and quantified uncertainties that will be used in the tools 
provided by Phase I11 to optimize monitoring and remediation. 

The DFMNAM3DF system combines information from solute concentration time histories, the 
VAM3DF transport model, geostatistical variability, and prior knowledge of constant parameters. 
The system computes parameter estimates and model predictions and quantifies uncertainty in 
terms of estimate and prediction error covariances. 

The DFMNAM3DF system was developed using customized FORTRAN software. Testing and 
performance benchmarking has been performed to demonstrate functionality and to show that the 
software can be efficiently applied to contaminant transport modeling at the FEMP. 

This document presents the software capabilities, input/output specification and test results. 

1.2 PRODUCT DEFINITION AND CAPABILITIES 

1.2.1 Operational Environment 

It is anticipated that, once accepted, the integrated DFMNAM3DF system will be part of a suite 
of Aquifer Restoration Management Support Tools. DFM/VAM3DF will be used to help monitor ~ 

compliance and to provide the basis for optimization of remediation. The DFM/VAM3DF s e 8 d t f O l Z  
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will estimate transport parameters and provide model predictions for the fate and transport of 
chemicals in groundwater. Uncertainties will be quantified in terms of estimate and prediction 
error covariances. Based on experience in the groundwater community, quantification of 
uncertainty for parameters with substantial spatial variation requires geostatistical 
parameterization. Spatial variation is modeled as a random field variation about a trend where the 
trend is a function of constant parameter states. Parameters having less spatial variation can be 
modeled with a blocked parameterization such as a trend that is a function of constant parameter 
states. 

The DFM/VAM3DF system is an integration and customization of FORTRAN programs. A 
graphical interface and input/output file structure is used. This will provide the starting point for 
Phase I11 development of an efficient user interface and post-processor for remediation 
optimization. 

1.2.2 Capabilities 

The DFM/VAM3DF software provides the capability to process monitoring data, to estimate 
transport parameters and predict future chemical concentrations in groundwater with quantified 
uncertainties. Information is combined from VAM3DF flow and transport models, geostatistical 
variability, prior statistical knowledge of constant parameters, and the monitoring data. A 
capability is provided to remove data outliers with statistical data editing. Further, calculation of 
data fit error uncertainties provides the capability to test model robustness and to tune statistical 
parameters to achieve model robustness. 

Prior knowledge of geostatistical model parameters such as correlation distances and standard 
deviations (provided by a geostatistical software package or technical judgment) must be supplied 
to DFM/VAM3DF. Then the correlation distances and standard deviations can be manually 
adjusted in the DFM/VAM3DF system based on data and model fit errors. Prior knowledge of 
constant parameter standard deviations may be provided by technical judgment. Alternatively, the 
constant parameter may be viewed as fixed but unknown and estimated directly from the data when 
there are sufficient data. 

The measured data include time histories of aqueous uranium concentration obtained from 
monitoring and extraction wells, and from geoprobe data. Measurement errors are assumed to be 
scale errors and multiplicative. They are transformed to additive by using the log of the 
measurement. The measurement error is modeled as a white noise. 

Prior knowledge of the measurement noise standard deviation is obtained from technical judgment 
and separate analysis of the data. The measurement noise comes from instrumentation and 
recording errors and from small scale fluctuations in concentrations. The measurement noise 
standard deviation can be manually tuned in DFM/VAM3DF based on data fit errors. Further, 
automated data editing is provided based on excessive data fit errors to help prevent estimation 
errors due to data outliers. 
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The customized VAM3DF transport model from Phase I is used where it is assumed that flow is 
known. Since flow calibration uncertainties could be important, spatial variation in effective 
porosity is used to help account for flow uncertainties. 

DFM!VAM3DF is currently designed to provide estimates for the following parameters: 

0 Kinetic mass transfer parameters. A Freundlich isotherm model is used with a 
distribution coefficient, &, and a desorption rate constant, a d .  Since spatial 
variation in & is important, a geostatistical model can be used with log,, Kd 
modeled as a random field with a polynomial trend. a d  can be modeled as a 
polynomial trend or a random field with a polynomial trend. 
Effective Porosity. Since an effective porosity is used to help account for flow 
uncertainties, a geostatistical model can be used with the log,, (effective porosity) 
modeled as a random field with a polynomial trend that is a function of constant 
parameters. 

0 Initial uranium solute concentration. Since there is no time when initial 
concentrations (IC’s) are known perfectly, a geostatistical model can be used for 
the initial solute concentration. The log,, IC is modeled as a random field. The 
initial condition for uranium adsorbed mass fraction is assumed to be in equilibrium 
so it is a function of the IC and isotherm parameters. Initial chemisorbed mass 
fraction can be set to zero since the data are not likely to be available. 
Dispersivities. Dispersivities are modeled as polynomial trends that are functions 
of constant parameters. 

0 

0 

All constant parameters in the above can be viewed as fixed but unknown parameters which is 
equivalent to viewing them as structural parameters in kriging. If insufficient data are available 
for their estimation, then they can be viewed as having Bayesian prior for estimation purposes. 
The Bayesian prior can come from technical judgment or separate data analysis. 

A dual-grid approach is used with separate grids for the physical model and for the random field 
parameters. This allows the physical model grid to be selected based on the needs of accurate 
physical modeling and the parameter grid to be selected based on the level of spatial variability 
in the parameters. The nodes of the physical model grid must be inside the parameter grid, since 
parameter values are interpolated from the parameter grid onto the model grid. In other words, 
the physical model grid is used to provide numerical solutions for the transport equation, using 
the transport parameter values mapped from the parameters grid. 

DFM/VAM3DF uses Gauss-Newton nonlinear iteration with backtracking for convergence. The 
Gauss-Newton step is obtained using the direct method, LSQR method, or representer method. 
Automated data editing is provided based on excessive data fit errors. Separate use of VAM3DF 
(with parameter estimates as input) is required for model predictions of uranium concentration and 
clean up time. The system can be initialized from prior estimates or as a restart from a previous 
run. During run time, output will be provided on nonlinear backtracking, values of the 
Gauss-Newton convergence criterion, and data editing so the user can intervene if necessary. 



DFMNAM3DF can provide nonlinear batch estimation for full nonlinear accuracy. Alternatively, 
the extended Kalman filter provides quick monitoring updates with some degradation in nonlinear 
accuracy. The extended Kalman filter performs nonlinear estimation by doing Gauss-Newton 
relinearization only for the current measurements. The extended Kalman filter is initialized using 
nonlinear batch estimation. 

DFM/VAM3DF can directly compute the uncertainty for selected parameters by performing 
covariance simulation. Model predictions are obtained by running VAM3DF with parameter 
estimates as inputs. Then uncertainties in model predictions are computed using a Monte Carlo 
method for covariance simulation. 

n 
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2.0 DATA FUSION METHOD (DFM) THEORETICAL BACKGROUND 

Estimation and prediction is based on combining information from physical models, statistical 
models, and measurement models. Physical models for flow and transport provide relationships 
bevVveen dependent states (such as contaminant concentrations) and parameter states described 
below. 

Statistical models include models for spatial variation and constants. Spatial variation in parameter 
states such as kinetic mass transfer parameters can be modeled using a geostatistical Markov 
random field. Bayesian prior knowledge of constant parameter states such as trend parameters can 
be modeled using prior estimates and prior uncertainty. Since constant parameters have only one 
constant realization, the validity of prior knowledge of constant parameters cannot be tested. An 
alternative in DFM is to treat constant parameters as structural parameters with no prior 
knowledge except that they are fixed but unknown. The structural parameter treatment is 
consistent with the way constant parameters are treated in ordinary and universal kriging. 
Parameter states can include quantities such as kinetic mass transfer parameters, dispersivities, 
effective porosity, and initial conditions. 

Calibration targets and measurements can include contaminant concentration time histories and 
direct parameter measurements. It is sometimes useful to transform the measurements to the log 
of the measurements so scale errors that are multiplicative become additive. Measurement error 
models are additive and reflect the measurement dynamics that can include measurement noise. 

As explained by McLaughlin and Townley (1996), measurement errors are not just made up of 
instrumentation and recording errors but also include small scale fluctuations in the quantities 
being measured. A good approach for measurement error modeling is to do an audit of error 
contributors to at least identify the major contributors. Then the bias and trend parameters can 
be estimated using DFM state estimation and the noise standard deviation can be tested and tuned 
using DFM structural parameter estimation. 

A dual-grid formulation is used throughout the DFM approach. The parameter grid is specified 
consistent with the need to represent spatial variability and the physical model grid is specified 
consistent with the need to represent physical relationships. Part of the modeling is the 
specification of interpolation from the parameter grid to the physical model grid consistent with 
modeling parameter assumptions. The dual-grid formulation provides the flexibility to honor the 
physical relationships and parameter variations while maintaining computational efficiency. 

The DFM method uses Bayesian state estimation and Maximum Likelihood structural parameter 
estimation methods. Bayesian estimation is accomplished using Markov process and data equation 
methods from the DFM methods in Porter, Gibbs, Jones, Huyakorn, H a m ,  and Flach (2000) 
combined with the representer method from physical oceanography in Bennett (1992). The 
computationally intensive part of the approach involves simulation that runs forward and backward 
in time where the number of simulations depends on modeling conditions. The key to application 
of this technology is the marriage of estimation and numerical modeling methods. 

800015 
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The state estimation part of DFM solves the least squares problem examined by McLaughlin and 
Townley (1996) where DFM uses the somewhat more general model advocated by Bennett (1992). 
The paper by McLaughlin and Townley (1996) provides an excellent review of the least squares 
problem formulation and practical solution issues, and is a good companion to read with this 
report. 

In practice, useful analysis can be done using technical judgment to provide prior structural 
parameters. Some of the structural parameters such as uncertainties for constant parameters can 
not be tested because only one realization of the constant parameter is observed. Other structural 
parameters such as the standard deviations of measurement noises and the standard deviations and 
correlation parameters (correlation distances) of spatial processes can be tested. Then analysis of 
residual model and data fit errors can be used to adjust prior structural parameters. This is the 
way many Bayesian estimation methods are successfully used. However, when there are sufficient 
data and general structural analysis methods are available, then structural analysis can improve the 
objectivity and accuracy of predictive modeling. Structural parameters that cannot be tested such 
as uncertainties for constant parameters can be eliminated by making the constant parameter itself 
a structural parameter. The remaining structural parameters can be tested and tuned. 

The distinction between structural (bias, trend, standard deviation, and correlation distance) 
parameters and parameters that are the values of a spatially varying random field is at the heart 
of geostatistical approaches such as kriging (Kitinadis, 1997). Since DFM can estimate both 
parameter states and structural parameters, it can be viewed as a generalization of kriging to 
incorporate nonlinear physical models. 

2.1 GENERAL THEORY 

The following sections begin with a description of the model, including a model for spatial 
parameter variation using Markov processes. The next few sections provide key equations for 
state estimation methods, including the measurement equations, the penalty function formulation, 
the Gauss-Newton method, extended Kalman filter updates, and uncertainties. 

2.1.1 Models 

Since the models are ultimately used for computer implementations, they are discretized at the 
outset. The following sections describe physical, statistical, and measurement models. 

2.1.1.1 Phvsical Model 

The discretized transport equations are implemented in VAM3DF over time I =  1, 2, . . . , L for 
the dependent contaminant state vector c ' on the transport grid and for the independent parameter 
states 8 on the parameter grid as: 

0 08 0 1t.i 
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Where A' and Bp-' contain storage, advection-dispersion, and radioactive decay terms, Dp-' is the 
cross-component dispersion term, gp-' is the kinetic mass transfer term, and is the mass flux 
term. 

In Eqimtion . (2.1). . .  parameters - are represented on the transport grid by linearly interpolating the 
parameter states from the parameter grid. The transport equations stacked over time are treated 
as hard constraints where the contaminant states c 1  over time Z= 1,2, . . . , L are dependent states 
and the independent parameter states are 8. In Equation (2.1), c o  is a direct function of 
independent parameter states 8 for initial concentration (IC) parameters described in Section 
1.2.2. Consequently, c o  is not treated as a dependent state. 

Parameter states in 8 can include kinetic mass transfer parameters, effective porosity, the initial 
concentration (IC) for uranium (or concentrations of other chemicals), and dispersivities. Spatial 
variation in the parameters can be modeled using geostatistical random field parameters and a 
polynomial trend model that is functions of constant parameters as described in Section 1.2.2. The 
random field model is specified by 3-dimensional correlation distances and a standard deviation 
for the process. 

Bayesian prior knowledge about constant parameters is provided as prior estimates and prior 
estimate error covariances. The prior on the constant parameters is a subjective Bayesian prior 
that is useful to incorporate technical judgment, particularly when data are limited. 

2.1.1.2 Statistical Model 

Spatial variations of parameter states are modeled using geostatistical Markov process. Prior 
knowledge of constant parameter states is modeled using prior estimates and uncertainties. 

A wide class of 2-dimensional and 3-dimensional spatial random fields can be described or 
approximated by the following first order process f 

where the matrix C is a function of the correlation distances and w is a zero mean white noise 
input with noise density 4. The first order model is assumed here, but it readily generalizes to 
higher orders (see Yucel and Shumway (1996) for ideas on the use of higher order models in 
hydrology and geology). Equation (2.2) can be used to model spatial variation in parameters such 
as the kinetic mass transfer parameters. 

A finite difference discretization of Equation (2.2) over a 3-dimensional curvilinear grid gives the 
discrete Markov random field 

f .  = c 
1J.k s al,m,n x + l j + m , k + n +  Wij,k (2.3) 

. <  63043017 
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where the a coefficients are defined over a region of support S that is the adjacent nodes and the 
integrated noise wjj,! is a zero mean white noise process with variance qij,k. It is assumed that the 
correlation distance is at least twice the grid spacing in each direction. Similar relationships exist 
on a 2-dimensional grid. 

Large scale spatial variation is modeled by the Markov model of Equation (2.3) using only local 
equations. This property is one of the reasons that DFM achieves computational efficiency for 
geostatistical estimation. 

The summation on the right hand side of Equation (2.3) is an interpolation for&k givenfon the 
adjacent nodes and yj,k is the interpolation error. As will be seen later, state estimation selects 
states to minimize these interpolation errors in combination with other errors. 

In order to keep relationships simple, the variances of the interpolation errors are normalized to 
the same value in Equation (2.3). This will be important later for estimation of the variance of 
the interpolation errors. 

State estimation can begin with reasonable values for the standard deviations and correlation 
distances of parameters that have spatial variation. This provides the noise density and correlation 
distances needed by Equation (2.2) and the discretized model of Equation (2.3) which is then 
normalized. If there are sufficient data, then the structural parameters consisting of the variance 
of the interpolation error and the correlation distances can be adjusted. 

The statistical model is the sum of the Markov random field Equation (2.3), and a polynomial 
trend. The coefficients of the polynomial trend are constant parameters 8,. Prior knowledge 
about constant parameters 8, is provided as a prior estimate 6 ,  and prior estimate error 
covariance Pecthat can be expressed as 

where 6, is the constant parameter estimate error. The prior covariance will be diagonal. Only 
one realization of constant parameters is observed so it is not possible to adjust the prior estimate 
error covariance. The prior on the constant parameters is a subjective Bayesian prior that is useful 
to incorporate technical judgment, particularly when data are limited. An alternative is to view 
the constant parameters as structural parameters that are fixed but unknown. This can be 
accomplished without changing the computer code by setting the prior estimate error variances to 
very large values to use the “uninformative prior” approach (see Porter (1979) to understand this 
idea in another application.). For groundwater this should be a well conditioned calculation since 
there will usually be only a small number of constant parameters. 

The statistical model for the parameters in Equations (2.3) and (2.4) can be expressed as the 
following linear system: 
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L e  =s+v, 
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where f and 8, parameters are stacked into the vector 8, L includes the a coefficients and other 
relationships between parameters in (2.3) and (2.4), s includes the prior constant parameter 
estimates, and v, is the marker interpolation error and constant parameter prior estimate error with 
covariance Q,. The terms of v, corresponding with random field variation are normalized to have 
unity variance for ease of testing model fit errors later. 

2.1.1.3 Measurement Model 

Time histories of solute concentration measurements are available from extraction wells, 
monitoring wells, and geoprobe data. The possibility is also left open for data that can be 
interpreted as direct measurements of parameters. Concentration measurements are modeled by 
linear interpolation from the transport grid and timeline to the measurement location and time. 
Initial condition (IC) concentration measurements are modeled by linear interpolation from the 
parameter grid since the IC’s are parameters. Other direct measurements of parameters are also 
modeled by interpolation from the parameter grid. For processing, the actual measurements of 
concentration are taken to be the log,, of the concentrations due to the possible spread in the 
concentration data. The measurement errors are assumed to be additive. The measurements are 
normalized by dividing by the standard deviation of the measurement noise. This produces 
measurement equations for concentrations and other direct parameter measurements of the form: 

where z, is a historical concentration measurement, h, is a linear function of the simulated 
concentrations, 2, is a direct parameter measurement, h, is linear interpolation from the parameter 
grid, the concentration measurement noise v,, has covariance R, , and the direct measurement noise 
va has covariance R,. Since the measurements are normalized, R,  and R, are actually identity 
matrices, but the more general notation is used so the theory is clear. 

2.1.2 Penalty Function 

State estimation is performed by selecting estimates that minimize model and data fit errors. This 
is accomplished by defining a penalty function that penalizes excessive model and data fit errors. 
Then state estimates are selected that minimize the penalty function. 

The penalty function P is defined to be the sum-of-squares of the interpolation errors in spatial 
variation, prior estimate errors in constant parameters, and data fit errors. All of the errors are 
normalized by the expected statistical variation in the error to give P as 
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The first term penalizes interpolation errors in spatial variation and prior estimate errors in 
constant parameters. The second and third terms penalize data fit errors. 

If the only statistical assumptions are that the first and second moments of statistical quantities are 
known, then the penalty function approach provides Bayesian least-squares estimates. Assuming 
estimate errors are linear perturbations within the expected statistical variation, the estimate error 
covariance for the Bayesian least-squares estimate can be computed using equations given later in 
this section. If the additional assumption is made that the statistical quantities are Gaussian, then 
the estimates are Maximum A Posteriori (MAP). By definition, MAP estimates produce the values 
of the states that have the highest probability of being true given the measured data. If statistical 
assumptions are dropped altogether, then the penalty function approach for estimates still makes 
sense. The covariances in the penalty function are reinterpreted as weighting coeficients in 
smoothness conditions on the estimates. 

The penalty function is minimized by solving equivalent nonlinear regression problem with 
measurement equations: 

The solution of the regression problem is obtained by minimizing a least squares cost function that 
is the same as the Bayesian penalty function. Further, perturbation analysis shows that the 
estimate error covariance is the same for the Bayesian estimation and regression problems. 

2.1.3 Gauss-Newton Method 

The regression problem is solved using the Gauss-Newton method where the Gauss-Newton step 
for iteration r is the solution to the linearized equations: 

HydroGeoLogic, Inc. 4/5/00 



_ ' - - 3 0 2 2  
where 68, 6s, 6z, , 6z,, are perturbation quantities referenced to state estimates from the previous 
iteration 8 r- 1 as: 

,l 

and where J,  and J, are measurement sensitivity matrices for the measurement equations in 
Equation (2.6). 

The partial derivatives in Equation (2.9) are evaluated at the parameter estimates from the previous 
iteration and the dependent states are computed by simulation of Equation (2.1) using the 
parameter estimates. 

The adjoint equation given below is solved backwards in t h e  for each measurementj to produce 
the j'" row of J , ,  Using (2.1) for the physical model and Equation (2.6) for the measurement 
model, the adjoint equation is given by: 

(2.10) 

where the measurement model for thej'" measurement is denoted by h, and where 1; is the adjoint 
solution for thejth measurement at time step 4. Using Equation (2.1) again for the physical model, 
the element of J, for thejrh measurement in z, and irh parameter becomes: 

L 
Jlii= -E AjTR/ 

1=1 
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Using Equation (2.6) with the measurement model for thej'" measurement in z2 denoted by hj, the 
element of J2 for thej'" measurement in z2 and ifh parameter becomes: 

(2.12) 

Equations (2.11) and (2.12) completely determine J,  and J,. The computations are dominated by 
the backward simulations of Equation (2.10) for each measurement and the associated 
computations of Equation (2.11). Notice that the backward simulation of Equation (2.10) is zero 
until the time of the measurement, so the simulation essentially runs backward from the time of 
the measurement to the initial time. 

The Gauss-Newton method enjoys rapid quadratic convergence locally. However, global 
convergence can be erratic. Consequently, modification is required to achieve reliable 
convergence. Backtracking is used because it is simple and effective. To implement backtracking, 
additional evaluations of the penalty function P of Equation (2.7) are required for each iteration 
as explained in Press (1992). Each evaluation of the penalty function requires simulation of 
Equation (2.1) to compute the dependent states c' (e). If P is not converging properly, then the 
step length is reduced. 

The state estimates can be constrained in the nonlinear iterations to be physically realistic such as 
rate constants being non-negative. For backtracking, this can be done in an ad hoc manner by 
further reducing the step length until the constraints are satisfied. 

As convergence nears completion and becomes quadratic, a convergence criterion is needed. A 
natural approach for Bayesian estimation is to stop iterating when the numerical optimization 
errors become small compared with the expected statistical estimation errors. Since convergence 
should be quadratic near completion, the Gauss-Newton step provides a measure of the numerical 
error. Consequently, the following is a good test for convergence based on the normalized 
convergence criterion C where: 

J =  
J2 J1l 

(2.13) 

where P,, is the computed covariance of the state estimate errors 6 8 ,  and p is the dimension of 
8 . Satisfaction of Equation (2.13) says the numerical optimization errors are approximately 10% 



of the statistical estimation errors. The second equality in Equation (2.13) avoids the need to 
explicitly compute the estimate error covariance. 

The Gauss-Newton iteration can be initialized by the prior estimates for the parameter states. 
A!ter??atiVe!v , I  the -- iteration can be restarted from the end result of previous iterations. If different 
conceptual models are being hypothesized, it may be better to restart from the converged results 
of a somewhat different model than to go all the way back to the prior. 

The Gauss-Newton step is obtained by solving (2.9) using the direct method, LSQR method or 
representer method. The direct method (Lawson and Hanson, 1974) uses Householder 
transformations on the least squares system Equation (2.9). The resulting upper triangular linear 
system is solved by backward substitution. The LSQR method (Paige and Saunders, 1982) 
provides an iterative solution to the least squares system Equation (2.9). 

The representer solution of Bennett (1992) is given by 

60, = L -16s 

where 

LY = QA 
L ~ A = J ~  

(2.14) 

(2.15) 

The inversion of the second equation in Equation (2.14) is performed efficiently using a standard 
iterative conjugate gradient type of algorithm. The second equation in Equation (2.15) is solved 
for A, and then the first equation is solved for Y. Y and A are intermediate matrices. The 
solutions are sought a column at a time where the number of columns is the same as the total 
number of scalar measurements. Each solution is performed efficiently using a standard conjugate 
gradient linear solver. As each column of Y is formed, the multiplication of Y by J in the first 
equation of Equation (2.14) is performed, and the column of Y is discarded to minimize storage. 
Y does not need to be saved for the other multiplication by Y in Equation (2.14) because there is 
a more efficient way to do this. The application of the inverse in Equation (2.14) is achieved 
using Cholesky methods. Then the results of applying the inverse are post multiplied to the 
equations in Equation (2.15). Solving the post multiplied equations produces the right-hand side 
of the first equation in (2.14) by solving two linear systems. 

\ - “ P  HydmCeoLogic. Inc. 4/5/00 F \Projrcts\R03M) 372 wpd 2-9 



2.1.4 Extended Kalman Filter Updates 

Monitoring updates can be performed efficiently using extended Kalman filtering ideas from 
Jazwinski (1970). The idea is to linearize new measurements in time around the best estimate at 
the current time. Old measurements from previous times are re-referenced to new estimates using 
the previous linearization. The extended Kalman filter assumes that the current measurements are 
the most important for estimating what is desired. 

Assume that measurements at previous times have been processed to produce a current estimate. 
Now assume new measurements become available at the current time. The terms in the 
measurement model in the second equation in Equation (2.9) that are relative to the current time 
are linearized around the current estimate as before. However, the terms that are relative to 
previous times are simply re-referenced to the current estimate using the previous linearization. 
The assumption is that the previous linearization is still good at new estimates. Also, the terms 
in the statistical model represented by the first equation in Equation (2.9) are re-referenced to the 
current estimate since the statistical model is linear. This means that the left hand side of Equation 
(2.9) that is relative to previous times and provides statistical models remains unchanged, but the 
right hand side as, 6z terms do change. 

Now perform a nonlinear iteration about the new measurements as before. Notice that the 
backward simulations of Equation (2.10) and the associated computations of Equations (2.11) and 
(2.12) are only performed for the new measurements for each iteration. Also, notice that the 
columns of Y in Equation (2.15) for previous measurements remain unchanged. If the new 
measurements are appended at the end of the old measurements, then the Cholesky factors of the 
matrix being inverted in Equation (2.14) can be computed by starting with the Cholesky factors 
from the previous measurements. 

2.1.5 Tests of Model Robustness 

A powerful test for identifying data and model problems is based on the minimized penalty 
function that is the sum-of-squares (SOS) of the normalized model fit and data fit errors 

(2.16) 

The assumption is made that the estimation errors are linear perturbations within the expected 
statistical variation. SOS should have an expected value equal to the number of scalar 
measurements m when all constant parameters have Bayesian prior or where is the number of 
constant parameters that are treated as fixed but unknown parameters (see Porter (1979) for an 
explanation of the distribution of residuals for uninformative prior and structural parameters). A 
value of SOS that is very different from its expected value fails the test. 
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If the data fit errors are Gaussian, then the test can be refined. A good approach is to test the data 
fit errors to see if they are Gaussian. Even non-Gaussian model and data noise can produce nearly 
Gaussian data fit errors if there are sufficient local linear operations on the data to produce the 
estimates. If the data fit errors pass the Gaussian test, then SOS should be distributed as a 
b111 -hi-w11wpd Oyu".".. randnm *-*------ variable with degrees - of freedom k equal to m when all constant parameters 
have Bayesian prior or m-P, where P, is the number of constant parameters that are treated as f i e d  
but unknown parameters. Then the variance of SOS should be 2k. For k larger than 20, the 
chi-squared distribution is approximately Gaussian so a good test is to reject model validity if SOS 
is more than five standard deviations from its mean according to 

(2.17) 
SOSx k + 5m or s k - 5 6 k  -Reject model validity 

If problems are identified using SOS, then a test that helps to isolate data and model problems is 
to compare the data fit error for each measurement to the standard deviation of the data fit error. 
The covariance of the data fit error for the representer method is: 

(2.18) 

But the Cholesky factors of the quantity being inverted have already been computed for the 
representer solution of Equation (2.14). Since R is diagonal, the covariance of the data fit error 
can be computed efficiently. The square roots of the diagonal elements of Equation (2.18) provide 
the standard deviations of the data fit errors. Places where the magnitudes of the data fit errors 
are much larger than the standard deviations can help indicate the source of problems. 

The uncertainty of data fit errors can also be used as the basis of data editing. The diagonals of 
Equation (2.18) can be shown to be less than the variances of the measurement errors. A 
conservative data editing approach is to normalize the magnitudes of the residual data fit errors 
by the square roots of the diagonals of R and edit the data for which the normalized residual error 
is excessive. 

The model fit errors can also help to isolate the sources of problems. The standard deviations 
from the diagonal elements of Q, are upper bounds for the standard deviations for the model fit 
errors where the model fit errors are: I 
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(2.19) 

Places where the model fit errors are much larger than the standard deviation from the diagonal 
of Q, can help to indicate the source of problems. 

2.1.6 Uncertainties 

The parameter estimate error covariance for the representer method is given by: 

(2.20) 

Selected diagonal and off diagonal elements of the covariance can be computed. As the 
representer matrix Y is being computed for the representer solution, elements needed to compute 
selected covariances are saved. Since the Cholesky factors of JY+R are already computed, the 
selected elements of the right hand term in Equation (2.20) can be efficiently computed. Po is the 
prior covariance of the parameters. The selected elements of Po are available from the prior 
spatial autocorrelation functions and from the prior constant estimate error covariance. 

Monte-Carlo methods are used to compute prediction error uncertainties for the representer 
method. The following provides Monte Carlo equations for the parameter estimate errors: 

(2.21) 

The noise terms v ~ , v ~ , , v ~ ~  can be produced with random number generators with covariances 
Q~ R,, 4,  respectively. The Cholesky factors of the quantity being inverted are available from 
the representer solution. 

The parameter estimate errors from the Monte Carlo runs are added to the parameter estimates to 
produce conditioned realizations of the parameters. Then these parameter realizations are used 
to simulate the transport model predictions. Then differences between the mean prediction and 
the prediction realization produces prediction errors. Statistics computed from prediction errors 
such as standard deviations quantify prediction uncertainty. 
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3.0 IMPLEMENTATION 

3.1 SOFTWARE STRUCTURE 

T I  IIIC - ~UILWalL ....F..."..o flow chart ir? Figure 3: 1 summarizes the DFMNAM3DF implementation. Figure 
3.2 shows the Gauss-Newton iterative procedure. For each iteration, a VAM3DF transport 
simulation is performed, the least squares system is constructed, and the least squares system is 
solved. Construction of the least squares system requires an adjoint transport simulation 
(backwards in time) for each concentration measurement. Since the adjoint transport simulation 
requires more computations than the VAM3DF transport simulation, the number of concentration 
measurements will have a significant impact on software run-times. For example, if the VAM3DF 
transport simulation uses one time unit of CPU then the adjoint transport simulation will use 
approximately on time unit of CPU for each concentration measurement. If the DFM/VAM3DF 
run has 100 concentration measurements, then each iteration will use approximately 101 time units 
of CPU for the VAM3DF transport simulation and the 100 adjoint transport simulations. A time 
unit is dependent on source factors including: problem size, number of time steps, and 
computational speed of the computers. Figure 3.3 summarizes the post Gauss-Newton 
computational procedure. The covariance and Monte Carlo computations depend on the type of 
least squares solver used. The representer method allows computation of the data fit error 
covariances, parameter estimate error covariances, and Monte Carlo realizations. The direct 
method computes the parameter estimate error covariance matrix. The LSQR method estimates 
the parameter estimate error variances. 

3.2 OVERVIEW OF SOFTWARE APPLICATION 

Modeling input is needed for the physical models, statistical models, and measured data, and 
control input is needed to select functions, for Gauss-Newton iterations, and for the least squares 
solvers. Output is provided during run time of batch estimation and monitoring updates to check 
on convergence. At the completion of estimation and update iterations, output can be provided 
to test robustness to help identify and isolate places where the models can be improved. Selected 
parameter estimate error covariances and prediction error covariances can be output based on 
covariance simulation. Covariance simulation can be performed for data that has been processed 
to quantify uncertainty. Covariance simulation can also be performed for possible future data 
before it is acquired to help make decisions to optimize monitoring. 

The following functions are performed by DFMNAM3DF: 

0 Nonlinear batch estimation 
0 

0 Testing robustness 
0 Parameter estimate error covariances 
0 

Monitoring updates using extended Kalman filter 

Prediction and prediction error covariance simulation 
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3.2.1 Nonlinear Batch Estimation 

Estimation begins with a conceptual understanding of what is desired to be estimated and what 
models and data are needed to perform the estimation. Then model and data information are 
gathered for inputs and control inputs are selected. 

A physical model grid is selected that will allow the physical relationships between quantities to 
be estimated, parameters, and data to be adequately represented without excessive simulation 
computations. A parameter grid is selected that allows adequate representation of spatial 
variability without an excessive number of parameters. The parameter grid dimension should be 
more than a few times the longest random field correlation distance and the shortest correlation 
distance should be at least twice the grid spacing. The physical model grid must be contained 
inside the parameter grid. 

Known physical model inputs are provided and parameters are specified to be estimated. 
Parameters can be modeled as a random field plus a polynomial trend for heterogeneous variation 
or just as a trend for smooth variation. For the 3-dimensional random fields, three correlation 
distances (x, y, and z directions) and the standard deviations are specified. These parameters are 
modified when testing model robustness. The trend models are functions of constant parameters. 
If there are adequate data, then the constant parameters can be viewed as fixed but unknown. This 
is accomplished by setting the prior standard deviation on the parameter to a large number. It is 
only necessary to set this number two orders of magnitude larger than the largest value of the 
parameter that is considered possible in order to avoid any conditioning problems from too large 
a number. If there are not adequate data to estimate all the fixed but unknown parameters, then 
a Bayesian prior estimate and estimate error covariance can be specified based on technical 
judgment. 

Measurement model and measured data inputs are provided for time histories of solute 
concentration measurements from extraction wells, monitoring wells, and geoprobe data. The 
possibility is also left open for input of data that can be interpreted as direct measurements of 
parameters to further constrain the estimation. For processing, the actual measurements of 
concentration are taken to be the log,, of the concentrations due to the possibly large spread in the 
concentration data. The measurement errors are assumed to be additive. The measurements are 
normalized by dividing by the standard deviation of the measurement noise. This is helpful later 
for testing data fit errors. 

The concentration measurement locations, times, measurement noise standard deviations, and data 
editing threshold are specified. The measurement noise includes instrumentation and recording 
errors and includes small-scale fluctuations in the concentrations from modeling errors. The noise 
standard deviation is initially specified using technical judgment and separate analysis of the data. 
Then it can be modified during testing of model robustness. 

The measurements of initial concentrations do not contain small-scale fluctuation errors from the 
transport model since the IC's are parameters and not computed by the transport model. 
Consequently, it may be appropriate to use a smaller standard deviation for noise on the IC 
measurements. Also, small-scale fluctuation errors may be location dependent. For example, 
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fluctuations due to the yearly wet and dry cycle might be more pronounced near Paddy's Run and 
the storm sewer outfall ditch so a larger noise standard deviation might be appropriate. The prior 
standard deviations can be selected and modified differently for measurements in different regions. 

Ccztrz! izpt is specified for the nonlinear iteration such as the threshold value of the convergence 
criterion, maximum number of iterations and least squares solver. Standard control input must 
be provided for the VAM3DF simulation of dependent contaminant states which are needed at the 
beginning of each iteration and for each backtracking step. 

During run time, output is provided to check on convergence. The following are shown in the 
output : 

0 Backtracking Steps 
0 Convergence criterion 
0 

0 Edited data 
Value of the penalty function 

Normal convergence usually begins with some backtracking. Then it settles into quadratic 
convergence until the convergence criterion is satisfied. If convergence is unsuccessful there may 
be problems with the data or the model and the run time output may suggest where the problem 
is. 

At run completion, the penalty function is broken down into components from data fit errors, 
random field interpolation errors, and constant parameter prior estimate errors. The data fit errors 
are output and summarized and the parameter estimates are output. 

3.2.2 Estimation Updates Using Extended Kalman Filter 

The input and interpretation of the output for estimation updates is similar to batch estimation. 
The updates are initialized with a batch run for a large enough data set to sufficiently reduce 
nonlinear errors. The subsequent updating is faster than a full nonlinear batch run, but there is 
some loss in nonlinear accuracy since only the new measurements are relinearized during nonlinear 
iterations. It is assumed that past estimation has produced adequate linearization of past 
measurements so the initial batch run must obtain a good linearization for the first set of data. 

For updates, the physical and statistical models have already been set up and past data have 
already been processed. The new measurement models and measured data need to be input. The 
same kind of control inputs as for batch estimation are required. The same kind of output subject 
to the same kind of interpretation is provided. 

3.2.3 Testing of Model's Robustness 

A test that can be performed to help isolate data and model problems is to compare the data fit 
error for each measurement to the standard deviation of the data fit error. Locations and times 
where the magnitudes of the data fit errors are much larger than the standard deviations can help 
indicate the source of problems. 
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The statistical model fit errors can also be used to test for the sources of problems. The model 
fit errors are the interpolation errors for the random field models and the prior constant parameter 
estimate errors. The model fit errors can be computed and compared with an upper bound on the 
model fit error standard deviation. Locations where the model fit errors are much larger than the 
standard deviation help to isolate the source of problems. For example, the location of large 
interpolation errors for a random field indicates the need for larger spatial variation in the model 
or possibly a spatial discontinuity. 

3.2.4 Parameter Estimate Error Covariance 

Selected diagonal and off diagonal elements of the parameter estimate error covariance matrix can 
be computed. The input is similar to what is required for one iteration of nonlinear batch 
estimation or a monitoring update. The best estimate from previous estimation or prior 
information is input for the initial estimate. Also, the diagonal and off-diagonal elements that are 
to be computed are specified. 

3.2.5 Prediction and Prediction Error Covariance Simulation 

Model predictions and prediction error covariances can be computed by Monte Carlo analysis 
based on VAM3DF simulation. Standard inputs for the VAM3DF simulation for the prediction 
conditions are required. DFM/VAM3DF computes Monte Carlo realizations of parameter 
estimates. The realizations are input to VAM3DF transport model to produce Monte Carlo 
realizations of prediction. Prediction error statistics such as error covariances can be computed 
from the prediction realizations. 
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Software Structure 

I Read field data, model input, and prior statistics I 

~ 

Initialize states, run VAM3DF, 
compute least squares system JAx = -R 

Perform Gauss-Newton iteration 

Covariance computation 

I Monte Carlo computation I 

I Output states and residuals 

Figure 3.1 Software Structure. 
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Gauss-Newton Iterative Procedure 

Solve least squares system JAx = -R 
with direct method, LSQR or 
Representer method. Set a = 1. 

Compute new state xi = xi-l + aAx 

4 
YES Check for convergence 

Set 
a = 0.5 

I-ld Is back-tracking needed? 

I Run VAM3DF, compute J and -R 

I 

Figure 3.2 Gauss-Newton Iterative Procedure. 
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Post Gauss-Newton Computational Steps 

Direct LSQW Repre sen-ter 

Compute covariances 
\ 
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Compute data fit 
error covariances 

Compute Representer 
Y 

V 

Compute covariances 

Generate Monte Carlo 
realizations 

Compute sum-of-squares . 
I Output states and residuals 1 

Figure 3.3 Post Gauss-Newton Computational Steps. 
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4.0 DFMIVAM3DF USER'S GUIDE 

The DFM/VAM3DF software requires the user to construct an ASCII input file for 
DFM/VAM3DF and an ASCII input file for VAM3DF. The software has a windows interface 
fcr smrting, monitoring, and stopping the DFM/VAM3DF run. The software writes an ASCII 
output file for DFM/VAM3DF and an ASCII output file for VAM3DF. In addition, an ASCII 
output file is written for post-processing purposes. The software is Windows 95/NT compatible. 

4.1 DFM/VAM3DF INPUT 

4.1.1 Mandatory Input Files 

The software requires the following three ASCII input files in one working directory: 

Dfmvam.in uses a keyword format to specify control input, parameter grid input, and field data 
input from direct measurements of parameters and concentration data input from 
extraction wells, monitoring wells, and Geoprobe data. An example input file with 
a detailed input explanation is given in Appendix A. 

Runin lists the input/output file names used by VAM3DF. Below is an example input 
file. 

vam3df.in 
vam3df.out 
vam3df. vel 
vam3df. nod 
vam3df.ele 
vam3df.flx 

-- (or UserDefined - see below) 

UserDefined lists the standard VAM3DF input with control input, physical model grid, 
boundary conditions and initial conditions. This user-defined input file name must 
appear on the first line of run.in. 

The VAM3DF simulation may require additional input for the Darcy velocities (with the file name 
listed in runin) See details below. 

4.1.2 Optional Input Files 

The software allows for the following two optional input files in the working directory: 

UserDefined is a binary file containing restart information from a previous DFM/VAM3DF 
simulation with the same parameters estimated and same concentration data. This 
file is used if the RESTART option is specified in Dfmvam.in. 

Dfmvam.sav is a binary file containing bookkeeping information from a previous 
DFMNAM3DF simulation with the same parameter grid and physical model grid. 
Reading the bookkeeping information from Dfmvamsav reduces the start-up 
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computations. NOTE: there is not a flag for this option, the software will use any 
Dfmvam.sav in the working directory. 

4.1.4 DFM/VAM3DF Input Details 

The technical details needed to specify the input file Dfmvam.in are discussed in this section. A 
keyword format is used to specify control input, parameter grid input, and field data input. 
Detailed input explanation is given in Appendix A. 

Parameter Grid 

Keywords: XGRID, YGRID, ZGRID, ZGRID3D, SITE2MODEL 

The parameter grid for the random field must include the VAM3DF numerical grid. The 
parameter grid is based on the level of spatial variability in the parameters. In each coordinate 
direction, the correlation length should be at least twice the grid spacing. The keywords XGRID 
and YGFUD define a non-uniform (x,y) grid with (0,O) at the lower-left comer. The keyword 
ZGRID can be used to define a grid with flat layers with zero elevation on the bottom layer. 
Another option is to use the keyword ZGRID3D to define a grid with non-uniform layers. The 
keyword SITE2MODEL defines the coordinate transformation from the VAM3DF grid to the 
parameter grid. 

Parameter Estimate Control 

Keywords: NRFNTRD, PARAMS 

The keyword NRFNTRD defines the number parameters estimated by random field with a 
polynomial trend and the number of parameters estimated by a polynomial trend. The keyword 
PARAMS specifies which parameters are to be estimated (Le., distribution coefficient (&), 
effective porosity, initial concentrations, ad, dispersivities). DFMNAM3DF estimates &, 
effective porosity, initial concentrations in the log,, domain. 

Measurements 

Keywords: FIELDDATA, CONCDATA, SCALESCONC, NSCREENPTS 

DFM/VAM3DF fits direct measurements of the parameter being estimated and historical 
concentration measurements. The keyword FIELDDATA defines direct measurements, while the 
keyword CONCDATA defines historical concentration measurements. If the parameter being 
estimated is in the log,, domain the direct measurement must be in the log,, domain. The 
concentration measurements must be given in the log,, domain. The keyword SCALECONC 
allows for the concentration measurements to be converted to the units in the VAM3DF model 
(i.e., pg/L to nano lb/ft3). When the initial concentrations are being estimated, the keyword 
SCALECONC will also scale the direct measurement data. 

F\Projeccls\RO3M).372. wpd 000035 4-2 HydroGmLngic. I r s .  4/5/00 I 



7 - 3 0 2 2  

The historical concentration measurements are input with a specified top of screen elevation and 
bottom of screen elevation. When the top and bottom screen elevations are given as the same 
elevation, the concentration measurement is treated as a point measurement (Le. Geoprobe data). 
Otherwise, the keyword NSCREENPTS is used to specify the number of points along the well 
 scree^!  sed to ayyroximate the average well concentration. 

All measurements are input with an error or noise standard deviation. The historical concentration 
error standard deviations are in the log,, domain. The error standard deviations are obtained from 
technical judgment and separate analysis of the data. 

Parameter Geostatistics 

Keywords: HYDROUNITSi, VAFUOGRAM , TRENDi 

A geostatistical model for the three-dimensional spatial variation may be used for each 
hydrostratigraphic unit (grouped by layers of the parameter grid) and for each parameter 
estimated. The keyword HYDROUNITSi specifies the layers in each hydrostratigraphic unit for 
the ith parameter estimated. Correlated spatial variability is modeled by the sum of a spatial 
polynomial trend and a Markov Random Field (MRF). The random variation about the 
polynomial trend is modeled as an anisotropic first-order autoregression with an exponential 
autocorrelation function. For an isotropic model we have 

- 1  J 

Where u is the parameter estimate, U is the polynomial trend, 0 is the user defined standard 
deviation of the MRF, and 'I; is the user defined correlation length. The keyword VARIOGRAMi 
specifies the standard deviation and correlation lengths for the ith parameter estimated. The 
keyword TRENDi specifies the initial polynomial trend coefficients and their prior error standard 
deviations for the ith parameter estimated.. The maximum allowed polynomial trend in 
DFM/VAM3DF is a partial 4-th order polynomial (15 coefficients), but in most cases a simple 
linear trend (C,+C,x+C,y+C,z) is used. The polynomial trend is a function of normalized 
coordinates (x,y,z) given by: 

where (x,y,z) are VAM3DF grid coordinates, (%,y,,zJ is the center of the VAM3DF grid, and 
(Ax,Ay,Az) are reference distances. 
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Measurement Editing 

Keyword: EDITTHRES 

The Gauss-Newton iteration includes an automated data editing option. Data editing occurs when 
a measurement residual is several times larger than the prior error standard deviation and 
DFMNAM3DF removes the measurement from the cost function. The data editing test is given 
by: 

where zkis the Kth measurement residual, w, is the specified measurement noise standard deviation 

of the Kth measurement, and R11.tr,-, = Jtai%,.for all n measurement residuals at Gauss- 

Newton iteration i- 1. 

If the absolute value of the normalized residual exceeds a user specified threshold (a) times the 
residual root-mean-squared from the previous Gauss-Newton iteration, then the measurement is 
edited. The keyword EDITTHRES defines the data editing threshold (a). Setting the threshold 
to a large value (i.e., 100) will disable the data editing option. 

Least Sauares Solvers 

Keyword: SOLVER 

The keyword SOLVER defines the least squares solution method. The direct solver uses 
Householder transformations followed by backward substitution to solve the least squares system 
and compute the estimate error covariance matrix (Lawson and Hanson, 1974). The LSQR solver 
(Paige and Saunders, 1982) provides an efficient solution of the least squares system and 
approximates the estimate error variances. The representer method (Bennett, 1992) computes 
selected estimate error covariances and parameter Monte Carlo realizations. 

Gauss-Newton Iteration Control 

Keywords: NITER, CONVTEST 

The keyword NITER defines the maximum number of Gauss-Newton iterations. The keyword 
CONVTEST defines the convergence criterion. 
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Covariance Outtwt 

Keyword: COVARIANCE 

The k e y ~ r d  Cc)VAP_IANCE is used to specify the estimate error covariance output. 

Monte Carlo OutDut 

Keyword: MONTECARLO 

The keyword MONTECARLO specifies the number of output realizations and the negative integer 
seed for random number generation. 

Histogram Plots 

Keyword: HISTOGRAM 

The keyword HISTOGRAM specifies the number of histogram plots, the number of bars on each 
plot, and the title, parameter, and location for each histogram plot. This option must be used with 
the MONTECARLO option. 

Monte Carlo Runs 

Keyword: MONTECRUN 

The keyword MONTECRUN is used to run VAM3DF for each parameter realization, which was 
computed by a previous run using the MONTECARLO option. When this option is used, the 
Gauss-Newton iteration is not performed. For a given output time, this option produces the 
concentration variance at each node of the VAM3DF grid, the maximum concentration histogram, 
and the maximum concentration cumulative distribution function. 

Restart ODtion 

Keyword: RESTART 

During each Gauss-Newton iteration, DFMNAM3DF writes a binary restart file containing 
current estimates and Jacobian terms for the historical concentration measurements. The keyword 
RESTART informs DFMNAM3DF to read a restart file from a previous run with the same states 
and the same number of historical concentration measurements. If the restart option is not used, 
then the prior trend is used to initialize parameter estimates and the full Jacobian is constructed 
for the first iteration. 

Extended Kalman Filter UDdate 

Keywords: EKFUDATE, FIELDDATA, CONCDATAE 
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When new data is acquired, parameter estimates can be updated without repeating the batch 
estimation. Both direct measurements and historical concentration measurements can be used to 
in the update. The keyword EKFUDATE is used to specify the extended Kalman filter update. 
The extended Kalman filter update requires using the LSQR solver or representer method and is 
normally used with the restart option. The direct measurement updates are put in the 
FIELDDATA section, while the keyword CONCDATAE defines historical concentration 
measurement updates. 

Chemsorution for Linear I(d 

Keyword: CHEM4LINRKD 

This option is used when estimating I(d without kinetic mass transfer. The keyword 
CHEM4LINRKD specifies a,, the chemisorption mass transfer rate for contaminant from 
adsorbed state to a bonded chemisorbed state. Chemisorption is modeled without kinetics by 
defining the first order decay rate: 

4.2 DFM/VAM3DF EXECUTION 

The Windows interface has the following options: 

Startin? DFMIVAM3DF 

From Windows Explorer, double-click on the dfmvam executable icon. Then from the 
Dfmvam Window, click on File/Start Dfmvam. 

Pausinp DFMNAM3DF durinp execution 

To pause execution and free-up CPU usage for other applications, click on State/Pause. 
To resume execution click on StateIResume. 

StoDDinP DFM/VAM3DF durinp execution 

From the Dfmvam Window, click on File/Stop Dfmvam. Since software checks for the 
'Stop Dfmvam' command after each major computation unit, there may be a delay before 
the execution is stopped. For a quicker termination, click on File/User Exit. 
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StominP DFM/VAM3DF after execution 

From the D h v a m  Window, click on File/User Exit. 

The Windows interface contains the following two subwindows during executions: 

1) DFM/VAM3DF run summary window shows the convergence test and cost function 
for each Gauss-Newton iteration. After the nonlinear iterations, the window shows the 
trend coefficients estimates, trend coefficients error standard deviations, field data average 
error and error root-mean-squared, and concentration data average error and error 
root-mean-squared. The window also shows the spatial variability sum-of-squares, trend 
polynomial sum-of-squares, field data sum-of-squares, and concentration data 
sum-of-squares. 

2) Graphic 1 window shows the progress of the VAM3DF transport simulations and the 
adjoint backward simulations. 

The status bar at the bottom of the Window interface shows the current task 

4.3 DFM/VAM3DF OUTPUT 

The software writes the following three ASCII files in the working directory: 

Dfmvam.out is a run summary file containing the convergence test and cost function for each 
Gauss-Newton iteration. After the nonlinear iterations, the file contains the trend 
coefficients estimates, trend coefficients error standard deviations, field data 
average error and error root-mean-squared, and concentration data average error 
and error root-mean-squared. The file also contains the spatial variability 
sum-of-squares , trend polynomial sum-of-squares, field data sum-of-squares , and 
concentration data sum-of-squares. 

UserDefined lists the standard VAM3DF output. This user defined output file name must appear 
in run.in. 

Dfmvam.tec is a Tecplot input file containing the paramter estimates on the parameter grid, field 
data estimates and residuals, and concentration data estimates and residuals (all in 
physical model coordinates). 

Dfmvam.rst is a binary file containing restart information. 

Dfmvamsav is a binary file containing bookkeeping information. 

Dfmvammc.tec is a Tecplot input file containing the paramter Monte Carlo realizations (all in 
physical model coordinates). 
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Dfmvammc.bin is a binary output file containing the random field parameter monte Carlo 
realizations. 

Dfmvammc. max is an ASCII output file containing the minimum and maximum parameter 
value ad location. 
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5.1 INTRODUCTION 

3mail-scalt: ” ‘ - L C S L I I I ~  -L- --.-- wa3 L,VllduCICeu --- -2-t A t imrifii the ...- fiinctionalities .--. of fie DFM/VAM3DF code using 
synthetic datasets. The small-scale tests included as many of the features of the full-scale system 
as possible so that the results are representative of the full-scale system. Synthetic data were 
generated with the VAM3DF model. A dual-grid approach was used with different grids for the 
physical and statistical models. Two-dimensional and three-dimensional small-scale system cases 
were considered where direct measurements and concentration measurements were taken at 
specified locations. 

The objectives of these tests were to verify the capability of the DFM/VAM3DF model in 
estimating random spatial variability and pure trend, to examine the effect of number of direct 
parameter measurements and concentration measurements, on the estimates, and to illustrate the 
impact that measurement errors and correlation lengths have on the prediction of concentration 
distributions. 

5.2 TESTING RANDOM FIELD GENERATION 

Correlated spatial variability was modeled by DFM/VAM3DF using variables that were the sum 
of a spatial polynomial trend and a first-order Markov Random Field (MRF). The testing of the 
generation of spatially correlated random field by the DFM/VAM3DF model was first conducted. 
In this test, the focus was on the generation of first-order MRFs, since the generation of the 
polynomial trend is trivial. The objective was to test whether the generated MRFs preserve their 
underlying statistical structure or pre-specified correlation functions or variograms. 

In the DFM/VAM3DF code, the spatial variability model has a correlation function which is 
exponential in three dimensions. The exponential correlation function or variogram is 
characterized by the variance (a’), and correlation lengths (TX, TY, and T,). 

To perform the testing, two types of MRFs were generated . The first MRF was an isotropic field 
in which the correlation lengths in all three dimensions were equal. The second MRF was 
anisotropic with all three correlation lengths unequal. The statistical grid was chosen to be 32m 
x 32m X 32m with a grid block size of be 2m x 2m X 2m. For the isotropic case, the 
underlying statistical structure has a variance of a’ = 0.05’ and correlation length of = 7; = 
7;z = 4m. For the anisotropic case, the underlying statistical structure has a variance of = 
0.05’ and correlation length of 7;X = 4m, T,, = 6m, T, = 8m. Once the MRFs were generated, 
the variogram model in GSLIB (Standard Center for Reservoir Forecasting, 1997) was employed 
to estimate the variograms from the MRFs generated. The calculated variograms were compared 
to the theoretical ones in Figures 5.1 and 5.2 for both the isotropic and anisotropic cases, 
respectively. The simulated variograms agree favorably with the corresponding theoretical results. 

I 
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5.2 TEST PROBLEM DESCRIPTION 

5.2.1 Discretization 

All the test runs were based on the transport of a conservative solute in a pseudo three-dimensional 
domain of 32m X 16m x lm. Flow was assumed to be in the x-direction. Synthetic data were used, 
since the true variables and their states are always known. The generated data provided a basis 
for testing the performance of the DFM/VAM3DF model. 

The computational domain was discretized into 32 X 16 X 1 elements, with an element size of 
l m x l m x l m .  Figure 5.3 shows the discretization of the computational domain. In the 
DFM/VAM3DF model, the parameters estimated were defined on a parameter grid, composed of 
16 x 8 x 1 zones of size 2m x2m X lm. The simulation of the pseudo three-dimensional transport 
using DFM/VAM3DF was made possible by assuming that the soil and transport properties and 
all initial and boundary conditions did not vary in the z-direction. 

5.2.2 Initial Concentrations 

Initial concentrations was assumed to be zero everywhere at start of simulation, unless otherwise 
stated. 

5.2.3 Boundary Conditions 

The boundary conditions were as follows. No mass fluxes were specified on the boundary faces 
at z =O, z=  lm, y=O, and y =  16m. No diffusive fluxes were specified across the boundary face 
at x=32m. Contaminant mass was introduced at the six nodes located in the center of the x=O 
plane, which were assigned the Dirichlet boundary condition of C = 1 at the middle nodes (y = 8m) 
and C =0.5 at the off-middle nodes (y =7m and 9m). The Dirichlet boundary conditions lasted for 
the first five days of the simulation after which the prescribed concentrations dropped to zero. 

5.2.4 Transport Parameters 

The default transport parameters were: Darcy velocity = OSm/day; effective porosity =0.3; 
distribution coefficient (&)=OS cm3/g with linear isotherm; bulk density= 1.85 g/cm3; 
longitudinal dispersivity (a, or aLH)= lm;  transverse dispersivity (a, or UT") = 0.2m; and decay 
rate =O l/day . Adsorption/desorption was assumed linear unless stated otherwise. 

One or more of the above default parameters were overwritten by the corresponding synthetically 
generated fields. 

Time step size of 1 day was used. In all cases, a simulation time of 120 days was assumed. 

5.2.5 Selection of Field and Concentration Measurement Locations 

Field variables refer to variables that are unknown except at scattered measurement locations and 
have to be estimated using the DFM/VAM3DF model. Examples are the initial concentration, 

. .  
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effective porosity, partitioning coefficient (KJ, dispersivity, etc. Concentration measurements 
refer to concentration values measured over time. 

For all test cases, various combinations of field and concentration measurements were chosen for 
the purpose of sensitivity analysis. Actual measurements were made at one or more potential 
measurement locations. Potential field measurement locations were assumed to coincide with that 
for concentration measurements except when the field variable was initial concentration. 

Twelve potential field measurement locations (see Figure 5.4) were located at a 3m interval in the 
x-direction, and 2m apart in the y-direction centered at {x=6.5m, y=Sm}. The locations were 
{x=2m, y=6m},{x=5m, y=6m}, {x=8m, y=6m}, {x= l lm,  y=6m},{x=2m, y=Sm}, 
{x=5m, Sm}, {x=8m, y=8m}, {x= l lm ,  y=8m}, {x=2m, y =  10m},{x=5m, y= lorn}, {x=Sm, 
y =  lorn}, and {x= 1 lm, y =  lorn}. Nine potential concentration measurement locations (see 
Figure 5.4) were spread 8m apart in the x-direction, and 4m apart in the y-direction centered at 
{x=16m, y=Sm} ofthedomain. Thelocationswere: {x=Sm, y=4m}, {x=8m, y=8m}, {x=8m, 
y =  12m}, {x=16m, y=4m},{x= 16m, y=8m}, {x= 16m, y= 12m}, {x= 16m, y=4m},{x= 16m, 
y=Sm}, and {x=16m, y=12m}. 

5.2.6 Description of Test Scenarios 

Table 5.1 presents a description of the scenarios for seven sets of test problems. In each case, 
estimation of only one variable is considered given specified combination of field and 
concentration measurements. 

5.3 SIMULATION PROCEDURES 

The following steps were followed for each test problem: 

1. Generate a “true” field on the VAM3DF numerical grid. 

e If the variable to be estimated is spatially random, a 3-dimensional random field is 
generated with the underlying statistical parameters such as the trend coefficients, 
standard deviation and correlation lengths. The generation is done on a 3- 
dimensional parameter grid of 32m X 16m X 16m with an element size of 2m in 
all three dimensions. Only one slice (at z= Sm) of the 3-dimensional field 
generated is selected and used for the subsequent simulation and testing purpose. 
The slice represents a 2-dimensional random field. A linear interpolation is 
performed to map this 2-dimensional field onto that of the VAM3DF numerical 
(x,y) grid, so that the nodal properties at the top (z=lm) and bottom (z=Om) 
planes of the numerical grid are the same. 

e If the parameter to be estimated is the initial concentrations, the generation of the 
“true” field is achieved by running a transport simulation given prescribed initial 
concentrations, boundary conditions, and transport parameters. The solution at a 
desired time is considered the “true” initial concentrations. 
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a If the parameter to be estimated is a linear trend, the generation of the trend is 
simply based on the prescribed linear trend. 

2. Sample the “true” field at selected locations inside the domain to obtain the measurement 
data for the field. Add noise (or measurement error) to the sampled field data values. The 
noise term at each measurement location was Gaussian, identical, independently distributed 
(i.i.d), with zero mean and a prescribed error standard deviation. 

3. Assume the “true” field (without noise) is completely known, run the transport problem 
using VAM3DF and obtain the concentration solutions at all possible time levels given 
appropriate initial and boundary conditions. Sample these solutions at selected time levels 
and locations to obtain the concentration measurement data. Add noise (or measurement 
error) to the sampled concentration data. Again the noise term at each measurement 
location was assumed to be Gaussian, i.i.d, with zero mean and a prescribed standard 
deviation. 

4. The field and concentration measurements with noises are then considered as if they were 
observed on the XY plane midway (z=0.5m) between the top and bottom planes. 

5 .  Prepare the main input data file for DFM/VAM3DF by incorporating the field and 
concentration measurements. Run DFM/VAM3DF with convergence criterion of 0.2, and 
the LSQR solver option. 

6. For prediction purpose, run VAM3DF with the nodal values of the unknown parameters 
replaced with the corresponding estimates. 

5.4 TEST METHODS 

5.4.1 Visual Inspection 

One way of examining the performance of DFM/VAM3DF is to compare the estimated parameters 
with the true field. This can be accomplished by plotting the contours of the true and estimated 
parameters. Another way of examining the performance of DFM/VAM3DF is to compare the true 
and simulated breakthrough curves at selected spatial locations. The true breakthrough curves were 
obtained by running VAM3DF with the “true” field. The simulated breakthrough curves were 
obtained in a similar manner except that the nodal values of the parameters are replaced by the 
corresponding DFM/VAM3DF estimates. Four observation wells were assumed to be present, 
which are located at the cross-section, x=  16m. The closer the simulated breakthrough curves are 
to the true ones, the better the parameter estimates will be. 

5.4.2 Chi-Squared Test 

A useful test for identifying problems is based on the total sum-of-squares (SOS) of the normalized 
model fit and data fit errors. The total SOS should be distributed as a Chi-squared random 
variable with degree of freedom (D.F.) k equal to m (the number of scalar measurements) when 
all constant parameters have Bayesian prior, or m - pc where pc is the number of constant 
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parameters that are treated as fixed but unknown parameters. For k > 20, the Chi-squared 
distribution is approximately Gaussian with mean k and variance 2k. 

SOS should lie within five standard deviations from the mean, or: 

k - 5 F k  i SOS 5 k + 5 @ E  * (5.1) 

Should SOS be smaller than k ,  Equation (5.1) may be written as: 

k - SOS n = - i 1  
5 F k  

or, should SOS be greater than k,  Equation (5.1) may be written as: 

S O S - k  
5 rk n = -  

(5.3) 

where n is the multiple of five standard deviations. The above condition is based on an assumption 
that components of the SOS are normally-distributed random variates with unit variance. This 
assumption may not be valid for some situations. The application of the above limits should be 
considered a qualitative indicator of model's robustness. In the event that n is greater than unity, 
caution should be exercised. 

5.5 SIMULATION RESULTS AND DISCUSSION 

Following the simulation procedures outlined earlier, the DFM/VAM3DF model was employed 
to solve each of the test problems mentioned in Table 5.1. The following provides a summary and 
discussion of the simulation results. 

5.5.1 Estimation of Initial Concentration 

The estimation of the spatial variability of the initial concentration was conducted based on 12 
potential field measurements and 36 potential concentration measurements at 9 potential 
observation locations. (Four concentration measurements at days 10, 30, 60, and 90 at each 
observation location). A prior constant trend of -5 and a small prior standard deviation was 
specified, implying that the trend parameter was essentially known. 

Table 5.2 presents the result summary for this problem. Figures 5.4 and 5.5 shows the initial 
plume estimates and the associated parameter error standard deviations, respectively, for three 
combinations of the field and concentration measurements. In the figures, circles represent 
concentration measurement locations and the triangles denote field or initial condition 
measurement locations. Figure 5.6 presents a comparison of simulated breakthrough curves with 
the true breakthrough curves. Figure 5.4 shows that Estimates 121C 4C and 121C 36C match the 
true log IC field better than Estimate 1IC 36C. Figure 5.6 shows that 12 IC, 4C and 1 I 66846  
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breakthrough curves are closer to the true breakthrough curves than the 1IC 36C breakthrough 
curves. The results suggest that direct measurements of IC have a larger impact on the estimate 
than concentration measurements, which is consistent with the measurement error given in Table 
5.1. Figure 5.5 shows that the parameter uncertainty is smallest at the direct measurement 
locations. 

5.5.2 Estimation of Log Effective Porosity 

The estimation of the spatial variability of log (effective porosity) was conducted based on 9 
potential effective porosity (or field) measurements and 45 potential concentration measurements 
at 9 potential observation locations. (Five concentration measurements at days 10,20, 30,60 and 
90 at each observation location). The 9 field and concentration observation locations coincide with 
one another. Sensitivity of the log (effective porosity) estimates to changes in measurement errors, 
correlation length, and number of measurements was examined. A prior constant trend of log 
(effective porosity)=-0.6 with a standard deviation of 0.2 was specified, implying that the trend 
parameter is basically unknown and has to be estimated as well. Measurement errors were set 
equal to 0.01 for log (effective porosity) and 0.1 for log concentrations. 

Table 5.3 presents the result summary. Notice that the concentration sum of squares is smaller 
when all 9 porosity measurements are used. Figures 5.7-5.8 show the log porosity estimates and 
the associated parameter error standard deviations, respectively. Figure 5.9 depicts the true and 
simulated breakthrough curves at the observation locations. Figure 5.7 shows that Estimates 9 
porosity 5C and 9 porosity 45C match the true field at the 9 porosity measurement locations. 
Also, the two estimates with 45 concentration measurements have low log (effective porosity) at 
x = 4m, y =  8m. Figure 5.8 shows that parameter uncertainty is smallest at measurement 
locations. Figure 5.4 shows that all of the breakthrough curves based on the estimated log 
(effective porosity) fields matched the true breakthrough curves very well. This suggests that the 
concentration distribution are not sensitive small-scale variations in porosity. Figures 5.7-5.9 
correspond to the case where the underlying correlation length for log porosity equals 4m (four 
times the numerical grid size). Figures 5.10-5.12 are the same except that the underlying 
correlation length for log (effective porosity) was increased to 8m. Notice that the true field in 
Figure 5.10 is smoother than the true field in Figure 5.7. The estimates, error standard 
deviations, and breakthrough curves for the 8m correlation length case are similar to the 4m 
correlation length case. 

5.5.3 Estimation of Log I(d 

The estimation of the spatial variability of the K,, variable was conducted based on 9 potential I(d 
(or field) measurements and 45 potential concentration measurements at 9 potential observation 
locations. The 9 field and concentration observation locations coincide with one another. Five 
concentration measurements representing snapshots at days 10, 20, 30, 60 and 90 at each 
observation location were assumed available. Sensitivity of the I(d estimates to changes in 
measurement errors, underlying correlation length and amount of measurements was examined. 
A constant trend value of -3 with a standard deviation of 0.2 was specified. Measurement errors 
were set equal to 0.01 for log I(d and 0.1 for log concentrations. Sensitivity of results with respect 
to the underlying correlation length was investigated. 
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Table 5.4 summarizes the results from DFMiVAM3DF. Figures 5.13-5.14 show the log & 
estimates and the associated standard errors, respectively. Figure 5.15 depicts the true and 
simulated breakthrough curves at the observation locations. In Figure 5.13 all estimates have the 
same general trend as the true field. Figure 5.15 shows that the 1 Kd 45C and 9 & 45C 
breakthrough curves match the true breakthrough - curves better that the 9 & 5C breakthrough 
curves. Figures 5.13-5.15 correspond to the case where the underlying correlation length equals 
4m or four times the numerical grid size. Similar results with the underlying condition length 
increased to 8m are presented in Figures 5.16-5.18. The estimates, error standard deviations, and 
breakthrough curves for the 8m correlation length case are similar to the 4m correlation lenght 
case. 

5.5.4 Estimation of Polynomial Trend in Log Effective Porosity 

The estimation of pure polynomial trend in porosity field was conducted by first generating a 
“true” linear trend in the log porosity field (which varies from log(0.5) at x=Om to log (0.2) at 
x = 32m). The Dirichlet boundary conditions were altered so that the prescribed concentration 
values prevailed throughout the simulation period. The trend consisted of an unknown constant 
plus an unknown x-direction trend coefficient. Measurement errors were set to 0.01 for log 
porosity and 0.1 for log concentrations. 

Table 5.5 summarizes the results from DFMiVAM3DF runs. Figure 5.19 shows the log porosity 
estimates. Figure 5.20 illustrates the true and simulated breakthrough curves at the observation 
locations. Note that, even though the 1 porosity 15C estimates do not match the true linear trend 
in figure 5.19, the resulting breakthrough curves are close to the true breakthrough curves in 
Figure 5.20. 

5.5.5 Estimation of Polynomial Trend in Log & 

The estimation of pure polynomial trend in Kd field was conducted by first generating a “true” 
linear trend in the log & field (which varies from log(O.1) at x=Om to log (10) at x=32m). The 
Dirichlet boundary conditions were altered so that the prescribed concentration values prevailed 
throughout the simulation period. The trend consisted of an unknown constant plus an unknown 
x-direction trend coefficient. Measurement errors were set equal to 0.01 for log Kd. Sensitivity 
of estimation analysis with respect to concentration measurement errors was conducted by setting 
log concentration measurement errors to 0.1 and 0.01. 

Table 5.6 summarizes the results from DFMiVAM3DF runs. Figure 5.21 shows the log K,, 
estimates. Figure 5.22 illustrates the true and simulated breakthrough curves at the observation 
locations. Figure 5.21 shows that, of the three cases, the 1% 15C estimates do not match the true 
linear trend, and Figure 5.22 shows that the resulting breakthrough curves do not match true 
breakthrough curves. Figures 5.23-5.24 present similar results except that the concentration 
measurement errors were reduced by one order of magnitude to 0.01. A lower concentration error 
improved the lK, 15C results. 
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5.5.6 Estimation of Polynomial Trend in Longitudinal Dispersivity 

The estimation of pure polynomial trend in longitudinal dispersivity field was conducted by first 
generating a “true” linear trend in the a, field (which varied from 0.5 at x=Om to 1.5 at x=32m). 
The trend consisted of an unknown constant plus a unknown x-direction trend coefficient. 

Table 5.7 presents a summary of the results. Figure 5.25 show the dispersivity estimates. Figure 
5.26 illustrates the true and simulated breakthrough curves at the observation locations. 
Eventhough the la, 15C estimates do not match the true linear trend in Figure 5.25, the resulting 
breakthrough curves are close to the true breakthrough curves in Figure 5.26. 

5.5.7 Estimation of the Log,, I& with Freundlich Isotherm 

The estimation of Freundlich isotherm parameter I<d was conducted assuming that n was equal 
to a constant value of 1 .O. The purpose was to test the capability of DFM/VAM3DF in estimating 
kinetic related parameters. Five concentration measurements representing snapshots at days 5, 
10,20, 30 and 60 at each concentration measurement location were assumed available. A constant 
unknown trend value of -0.3 with a standard deviation of 0.2 was specified. 

Table 5.8 summarizes the DFM/VAM3DF runs. Figures 5.27-5.28 show the log K,, estimates and 
the associated standard errors, respectively. Figure 5.29 depicts the true and simulated 
breakthrough curves at the observation locations. Notice that all three log K,, estimates resulted 
in higher concentrations than the true breakthrough curves. This may be caused by low I(d at x 
= 4m, y=8m compared to the true I<d field. 

5.5.8 Estimation of Polynomial Trend in Desorption Rate Coefficient 

The estimation of pure polynomial trend in desorption rate coefficient ad was conducted by first 
generating a “true” linear trend in the a d  field (which varies from lo4 at x=O m to 10” at x=32 
m). The trend consists of an unknown constant and an unknown trend coefficient in the x- 
direction. 

Table 5.9 presents a result summary. Figure 5.30 shows the desorption rate estimates. Figure 
5.3 1 illustrates the true and simulated breakthrough curves at the four observation locations. All 
three ad field estimates resulted in breakthrough curves that match the true breakthrough without 
matching the true ad field. 

5.5.9 Estimation of log I(d using Extended Kalman Filters Update (EKFU) 

The estimation of the spatial variability of log I(d was conducted using the EKFU. This test 
problem is identical to the problem in Section 5.5.3. First, log K,, was estimated using 9 & 
measurements and 36 concentration measurements at locations at 10,20, 30 and 60 days. These 
results were used to initialize the EKFU estimation, which used 9 concentration measurements at 
90 days. 

5-8 000049 HydmGeoLogic. Inc. 4/5/00 



,"- a .  30 2 2 
I 
I Table 5.10 summarizes the results. The 9 Kd 45C results from Section 5.5.3 are shown for 

comparison. Figures 5.32 - 5.33 show the log & estimates and the associated standard errors, 
respectively. Notice that 9% 35C and EKFU estimation gave similar results. Figure 5.34 depicts 
the true and simulated breakthrough curves at the observation locations. I 

I 
I 

I 

5.6 SUMMARY OF RESULTS 

The results presented in the previous section demonstrate the software functionality with respect 

identifiability are the behavior of the robustness indicator, n, are parameter dependent. For most 
of the test problems, fewer direct measurements leads to larger concentration residuals. Some of 
the parameters may not be identifiable from concentration measurements alone. 

to the determination of spatial variability and regional trends of transport parameters. Parameter 
1 
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Table 5.1 
Description of Test Problems 

Spatially variable initial 
concentration with 

6 = 2.0 
t, = 5m, tu = T, =4m 

p = log (lo5) 

Spatially variable porosity 
with 

p = log(O.3) 
(3 = 0.065 

t, = ty =T, =4m and 8m 

Spatially variable & 
with 

p = log(O.5) 
0 = 0.05 

T, = t, =t, =4m and 8m 

(Linear) Polynomial trend in 
log porosity 

True log porosity varies from 
log(0.5) at x=O to log(O.2) at 

x=32m 

(Linear) Polynomial trend in 

True log K varies from 
log(O.1) at x=Om to log(l0) 

at x = 32m 

1% & 

Constant trend 

Constant trend 

Constant trend 

Linear trend 

Linear trend 
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Measurement errors: U=O.Ol for log initial 
concentration (IC), and u =O. 1 for log 
concentration data 
Concentration measurements made at days 10, 
30, 60, and 90. 

- 
- 
- 

Number of measurements: 
1 IC and 36 concentrations; 
12 IC and 4 concentrations; 
12 IC and 36 concentrations 

Measurement combinations: 

Measurement errors: U=0.01 for log 
porosity, and U=O. 1 for log concentrations 
Concentration measurements made at days 10, 
20, 30, 60 and 90. 

- 
- 
- 

Measurement errors: a=0.01 for log'&, and 
u =O. 1 for log concentrations 
Concentration measurements made at days 10, 
20, 30, 60 and 90. 

- 
- 
- 

1 porosity and 45 concentrations; 
9 porosity and 4 concentrations; 
9 porosity and 45 concentrations. 

Measurement combinations: 
1 & and 45 concentrations; 
9 & and 4 concentrations; 

9 K, and 45 concentrations. 

Measurement combinations: 

Measurement errors: a=0.01 for log 
porosity, and a=O. 1 for log concentrations 
Concentration measurements made at days 10, 
20, 30, 60 and 90. 

- 1 porosity and 15 concentrations; 
- 3 porosity and 5 concentrations; 
- 3 Dorositv and 15 concentrations 

Measurement combinations: 

Measurement errors: U=0.01 for log &, and 
a=O. 1 or 0.01 for log concentrations. 
Concentration measurements made at days 10, 
20, 30,60 and 90. 

- 
- 
- 

1 K,, and 15 concentrations; 
3 K,, and 5 concentrations; 
3 K,, and 15 concentrations. 

I 
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- *- 3 0 2 2  
a -  

(linear) polynomial trend in 
longitudinal dispersivity aL 

True aL varies from 0.5m at 
x = Om to 1.5m at x = 32m 

Table 5.1 (continued) 
Description of Test Problems 

Spatial variable (Freundlich 
with n= 1) Kd 

= -0.3 
0 = 0.6 

z, = zy ='c, =4m 

(Linear) Polynomial trend in 
desorption rate coefficient 

ad 
True ad varies from at x 

= Om to at x = 32m 

Spatially variable Kd with p 
= log (0.5) 
(J = 0.05 

z, = z, = T~ = 8m 

Linear trend 

Constant trend 

Unknown linear 
trend parameters 

Constant trend 

Test Scenarios 

Measurement combinations: 

Measurement errors: a=0.0001 for aL, and 
a=O. 1 for log concentrations. 
Concentration measurements made at days 10, 
20, 30, 60 and 90. 

- 
- 
- 

Measurement errors: a=0.01 for log K,, , and 
CJ =O. 1 for log concentrations. 
Concentration measurements made at days 5, 
10,20,30, and 60. 

- 
- 
- 

1 aL and 15 concentrations; 
3 aL and 5 concentrations; 
3 aL and 15 concentrations. 

Measurement combinations: 
1 Kd and 45 concentrations; 
3 K,, and 5 concentrations; 
3 K, and 45 concentrations. 

Measurement errors: a=0.00001 for .ad, 

Measurement combinations: 

and a=0.01 for log concentrations. 
Concentration measurements made at days 10, 
20, 30, 60 and 90. 

- 
- 
- 

1 ad's and 15 concentrations; 
3 ad's and 5 concentrations; 
3 ad's and 15 concentrations. 

Measurement errors: CJ=0.01 for log &, and 
o =O. 1 for log concentrations. 
Concentration measurements made at days 10, 
20, 30, 60 and 90. 
Measurement combinations: 

- 
- 

9 ad's and 36 concentrations; 
3 ad's and 36 concentrations and EKFU 9 
9 concentrations; 
3 a,'s and 15 concentrations. - 

F\Projsls\R03d0.372. wpd 5-1 1 



Table 5.2 
Estimation of initial plume: summary of results 

1 IC 36 C 
12IC4 C 
12 IC 36 C 

37 2.46~10~ 38.0 56.3 94.4 1.32 
16 9.82x10-’ 97.9 5.8 103.8 3.10 
48 1.02x10* 100.0 29.2 129.4 1.66 

Sum of squares associated with the trend polynomial are included in totals but not listed in the table. 

4 .  

8 

Table 5.3 
Estimation of spatially random porosity field: summary of results 

(7; = correlation length) 

1 Por 45 C 45 1.1 23.5 49.4 74.3 0.62 

9 Por 5 C 13 3.0 37.0 3.2 43.6 1.2 

9 Por 45 C 53 3.5 52.9 41. 98.3 0.88 

1 Por 45 C 45 2.7 27.5 50.8 81.1 0.76 

9 Por 5 C 13 7.0 45.2 3.1 55.7 1.67 

9 Por 45 C 53 7.9 65.1 39.8 113.1 1.17 

Total-k 
5 c k  

n =  

Sum of squares associated with the trend polynomial are included in totals but not listed in the table. 

, a  
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Table 5.4 
Estimation of spatially random Kd field: summary of results 

(T = correlation length) 

4 

8 

1 Kd45 C 45 0.0 14.4 288.3 303.2 5.44 

9 K d 5 C  13 0.0 19.3 22.5 42.5 1.16 

9Kd45 C 53 0.0 32.7 171. 203.9 2.93 

1 Kd45 C 45 0.0 15.8 274.9 291.0 5.18 

9 K d 5 C  13 0.1 24.3 30.5 55.0 1.65 

9Kd45C 53 0.0 32.3 157.8 190.3 2.66 

Total-k 
5 F k  

n =  

1 Por 15 C 
3 Por 5 C 
3 Por 15 C 

Sum of squares associated with the trend polynomial are included in totals but not listed in the table. 

14 -0.494 -0.053 0.0 25.1 25.1 0.42 
6 -0.503 -0.189 1.1 7.5 10.6 0.27 
16 0.503 0.190 1.1 19.6 22.7 0.24 

Table 5.5 
Estimation of linear trend in log porosity: summary of results 

T o  tal - k n =  
5 4 %  

Sum of squares associated with the trend polynomial are included in totals but not listed in the table. 
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. .  

1 a, 15 C 

3 a , 5 C  

3a, 15C 

Table 5.6 
Estimation of linear trend in log K,: summary of results 

14 1.015 0.0142 0.0 44.9 45.1 1.18 

6 0.995 0.505 5.5 4.6 34.8 1.66 

16 0.999 0.505 6.0 12.1 42.8 0.94 

* Notes: 
1 Kd 15 C implies that the measured data include 1 Kd value and 15 concentration values, etc. 

n =  

Sum of squares associated with the trend polynomial are included in totals but not listed in the table. 

Total-k 
5 &k 

Table 5.7 
Estimation of linear trend in longitudinal dispersivity a,: summary of results 

Total-k 
5 &k 

n =  

Sum of squares associated with the trend polynomial are included in totals but not listed in the table. 

F\Pmjects\RO3-00.372. wpd 
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7 - 3 0 2 2  
Table 5.8 

Estimation of spatially random Freundlich K,: summary of results 

114.6 147.5 2.16 1 Kd45 C 45 0.0 32.9 

9 K d 5 C  13 0.0 26.7 21.0 47.8 1.36 

9Kd45C 53 0.1 64.9 100.5 165.5 2.19 
r 

1 a,, 15 C 14 10.6 0.000554 0.000013 0.20 28.7 29.0 0.56 
3 a , 5 C  6 17.3 0.000552 0.000158 432.1 5.1 655.9 37.5 

+ 3 a,, 15 C 16 28.3 0.000552 0.000158 431.5 22.4 . 672.7 23.22 

Table 5.9 
Estimation of linear trend in desorption rate coefficient a,: summary of results 

F \Projects\RO3M). 372. wpd 5-15 84B0056 
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Table 5.10 
Estimation of Spatially Random Kd Field with Extended Kalman File Update 

9 Kd 36 C 

9 Kd 36 C and 
EKFU 9 C 

9Kd45C 

44 0.0 32.6 147.9 180.6 2.91 

8 0.0 32.2 163.9 196.2 9.41 

53 0.0 32.3 157.8 190.3 2.66 

FWrojsMR0300.372.wpd HydroGmLogic, Inc. 4/5/00 



(a) x-direction Variograms 
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Figure 5.1 Simulated and True Variograms for the Generated Iostropic Markov Random 
Field. 
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(a) x-direction Variograms 
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Figure 5.2 Simulated and True Variograms for the Anistropic Markov Random Field 
Generated. 



(a) X Y  Plane View 
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Figure 5.3 Numerical Discretization of Computational Domain (Circles indicate nodes with 
Dirichlet boundary conditions). 
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(a) True Log IC Field (b) Estimates with 1 IC and 36 C Measurements 
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(c) Estimates with 12 IC and 4 C Measurements (d) Estimates with 12 IC and 36 C Measurements 
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Figure 5.4 Estimation of Initial Plume: True and Estimated Initial Plumes (Circles 
represent concentration measurement locations, and triangles initial concentration 
measurement locations. Four concentration measurements were made at each 
concentration measurement location. 1 IC 36 C implies 1 Initial Concentration and 
36 (9 locations X 4 valuedeach location) Concentration values, etc.) 
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(a) 1 IC 36 C Measurements 
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(b) 12 IC and 4 C Measurements (c) 12 IC and 36 C Measurements 
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Figure 5.5 Estimation of Initial Plume: Standard Deviations Associated with Log Initial 
Plume Estimates (Circles represent concentration measurement locations, and 
triangles initial concentration measurement locations. Four concentration 
measurements were made at each concentration measurement location. 1 IC 36 C 
implies 1 Initial Concentration and 36 (9 locations x 4 valuedeach location) 
Concentration values, etc .). 
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Figure 5.6 Estimation of Initial Concentrations: True and Simulated Breakthrough 
Curves (Four concentration measurements were made at each concentration 
measurement location. 1 IC 36 C implies 1 Initial Concentration and 36 (9 locations 
x 4 values/each location) Concentration values, etc.) 

5-22 HydroGmLogic. Inc. 4~5/00 000863 F\ProjsU\R03M).372.wpd 



7- 30 2 2 

(a) True Log Porosity Field (b) Estimates with 1 Porosity and 45 C Measurements 

-0 3R 

-0.42 

-0 47 

-0 52 

4 5h 

-0 M) 

-0 65 
0 4 8 12 16 20 24 28 32 

16 

12 

8: 

4 

0 
0 4 8 12 16 20 24 28 32 
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Figure 5.7 Estimation of Spatial Random Porosity with Underlying Correlation Length = 
4m: True and Estimated Log Porosity Fields (Circles represent concentration 
measurement locations, and triangles porosity measurement locations. Five 
concentration measurements were made at each concentration measurement 
location. 1 Por 45 C implies 1 Porosity and 45 (9 locations x 5 values/each 
location) Concentration values, etc.). 
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(a) 1 Porosity and 45 C Measurements 
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(b) 9Porosity and 5 C Measurements (c) 9 Porosity and 45 C Measurements 
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Figure 5.8 Estimation of Spatial Random Porosity with Underlying Correlation Length = 
4m: Standard Deviations Associated with Estimated Log Porosity Fields 
(Circles represent concentration measurement locations, and triangles porosity 
measurement location. Five concentration measurements were made at each 
concentration measurement location. 1 Porosity 45 C implies 1 Porosity and 45 (9 
locations X 5 valuedeach location) Concentration values, etc.). 
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(a) X=16m, Y=2m 
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Figure 5.9 Estimation of Spatial Random Porosity with Underlying Correlation Length = 
4m: True and Simulated Breakthrough Curves (Five concentration 
measurements were made at each concentration measurement location. 1 Por 45 C 
implies 1 porosity and 45 (9 locations x 5 valuedeach location) concentration 
values, etc.). 



(a) True Log Porosity Field (b) Estimates with 1 Porosity and 45 C Measurements 
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Figure 5.10 Estimation of Spatial Random Porosity with Underlying Correlation Length = 
8m: True and Estimated Log Porosity Fields (Circles represent concentration 
measurement locations, and triangles porosity measurement locations. Five 
concentration measurements were made at each concentration measurement 
location. 1 Por 45 C implies 1 Porosity and 45 (9 locations X 5 valuedeach 
location) Concentration values, etc.). 
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(a) 1 Porosity and 45 C Measurements 
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(b) 9Porosity and 5 C Measurements (c) 9 Porosity and 45 C Measurements 
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Figure 5.11 Estimation of Spatial Random Porosity with Underlying Correlation Length 
= 8m: Standard Deviations Associated with Estimated Log Porosity Fields 
(Circles represent concentration measurement locations, and triangles porosity 
measurement locations. Five concentration measurements were made at each 
concentration measurement location. 1 Porosity 45 C implies 1 Porosity and 45 (9 
locations x 5 values/each location) Concentration values, etc.). 
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Figure 5.12 Estimation of Spatial Random Porosity with Underlying Correlation Length = 
8m: True and Simulated Breakthrough Curves (Five concentration 
measurements were made at each concentration measurement location. 1 Por 45 C 
implies 1 Por and 45 (9 locations x 5 valuedeach location) Concentration values, 
etc.). 
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Figure 5.13 Estimation of Spatial Random K, with Underlying Correlation Length = 4m: 
True and Estimated Log K, Fields (Circles represent concentration measurement 
locations, and triangles K,, measurement locations. Five concentration 
measurements were made at each concentration measurement location. 1 K,, 45 C 
implies 1 I(, and 45 (9 locations x 5 valuedeach location) Concentration values, 
etc.). 
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(a) 1 Kd and 45 C Measurements 
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(b) 9 Kd and 5 C Measurements (c) 9 Kd and 45 C Measurements 
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Figure 5.14 Estimation of Spatial Random I(d with Underlying Correlation Length = 4m: 
Standard Deviations Associated with Estimated Log K,, Fields (Circles represent 
concentration measurement locations, and triangles K,, measurement locations. Five 
concentration measurements were made at each concentration measurement 
location. 1 K,, 45 C implies 1 K,, and 45 (9 locations X 5 valuesleach location) 
Concentration values, etc.) 
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Figure 5.15 Estimation of Spatial Random Kd with Underlying Correlation Length = 4m: 
True and Simulated Breakthrough Curves (Five concentration measurements 
were made at each concentration measurement location. 1 &, 45 C implies 1 I(d and 
45 (9 locations X 5 valuedeach location) Concentration values, etc.). 
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(a) True Log Kd Field (b) Estimates with 1 Kd and 45 C Measurements 

(c) Estimates with 9 Kd and 5 C Measurements (d) Estimates with 9 Kd and 45 C Measurements 

Figure 5.16 Estimation of Spatial Random K, with Underlying Correlation Length = 8m: 
True and Estimated Log I(d Fields (Circles represent concentration measurement 
locations, and triangles I(d measurement location. Five concentration measurements 
were made at each concentration measurement locations. 1 I(d 45 C implies 1 I(d 
and 45 (9 locations x 5 valuedeach location) Concentration values, etc.). 
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Figure 5.17 Estimation of Spatial Random I(d with Underlying Correlation Length = 8m: 
Standard Deviations Associated with Estimated Log K, Fields (Circles represent 
concentration measurement locations, and triangles & measurement locations. Five 
concentration measurements were made at each concentration measurement 
location. 1 & 45 C implies 1 Kd and 45 (9 locations X 5 valuedeach location) 
Concentration values, etc.). 
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(a) X=16m1 Y=2m (b) X=l6m, Y=4m 
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Figure 5.18 Estimation of Spatial Random I(d with Underlying Correlation Length = 8m: 
True and Simulated Breakthrough Curves (Five concentration measurements 
were made at each concentration measurement location. 1 IC,, 45 C implies 1 I<d 
and 45 (9 locations X 5 valuedeach location) Concentration values, etc.). 
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I (a) True Log Porosity Field (b) Estimates with 1 Porosity and 15 C Measurements 

4.34 

n4o 

446 

4 52 

4 JR 

-OM 

n 70 
0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32 

X(m) X(m) 

(c) Estimates with 3 Porosity and 5 C Measurements (d) Estimates with 3 Porosity and 15 C Measurements 

16 

12 41 40 

4 46 

U 32 

n 58 

-0 65 

0 4 70 

n 34 

8 E  
2. 

4 

0 4 8 12 16 20 24 28 32 
X(m) 

0 4 8 12 16 20 24 28 32 
X(m) 

Figure 5.19 Estimation of Linear Trend in Log Porosity: True and Simulated Log Porosity 
(Circles represent concentration measurement locations, and triangles porosity 
measurement location. Five concentration measurements were made at each 
concentration measurement location. 1 Por 15 C implies 1 Porosity and 15 (3 
locations X 5 valuedeach location) Concentration values, etc.). 
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Figure 5.20 Estimation of Linear Trend in Log Porosity: True and Simulated 
Breakthrough Curves (Five concentration measurements were made at each 
concentration measurement locations. 1 Por 15 C implies 1 Porosity and 15 (3 
locations x 5 valuedeach location) Concentration values, etc.). 
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(a) True Log Kd Field (b) Estimates with 1 K,, and 15 Conc Measurements I 
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Figure 5.21 Estimation of Log K, with a Linear Trend Based on Log Concentration 
Measurement Error of 0.1: True and Estimated Log I(d Fields (Circles represent 
concentration measurement locations, and triangles K,, measurement locations. Five 
concentration measurements were made at each concentration measurement 
location. 1 Kd 15 C implies 1 K,, and 15 (3 locations X 5 valuedeach location) 
Concentration values, etc.). 
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Figure 5.22 Estimation of Log K,, with a Linear Trend Based on Log Concentration 
Measurement Error of 0.1: True and Simulated Breakthrough Curves (Circles 
represent concentration measurement locations, and triangles I(d measurement 
locations. Five concentration measurements were made at each concentration 
measurement location. 1 I(d 15 C implies 1 I(d and 15 (3 locations X 5 valuedeach 
location) Concentration values, etc.). 
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(a) True Log & Held (b) Estimates with 1 & and 15 Conc Measwmnts  
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Figure 5.23 Estimation of Log I(d with a Linear Trend Based on Log Concentration 
Measurement Error of 0.01: True and Estimated Log Kd Fields (Circles 
represent concentration measurement locations, and triangles I(d measurement 
locations. Five concentration measurements were made at each concentration 
measurement location. 1 I<d 15 C implies 1 I(d and 15 (3 locations x 5 valuesleach 
location) Concentration values, etc.). 
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Figure 5.24 Estimation of Log & with a Linear Trend Based on Log Concentration 
Measurement Error of 0.01: True and Simulated Breakthrough Curves (Circles 
represent concentration measurement locations, and triangles I(d measurement 
locations. Five concentration measurements were made at each concentration 
measurement location. 1 I& 15 C implies 1 I(d and 15 (3 locations X 5 valuedeach 
location) Concentration values, etc.). 
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Figure 5.25 Estimation of Longitudinal Dispersivity with a Linear Trend: True and 
Estimated Dispersivity aLH Fields (Circles represent concentration measurement 
locations, and triangles dispersivity measurement location. Five concentration 
measurements were made at each concentration measurement locations. 1 aLH 15 
C implies 1 dispersivity and 15 (3 locations X 5 valuedeach location) 
Concentration values, etc.). 
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Figure 5.26 Estimation of Longitudinal Dispersivity with a Linear Trend: True and 
Simulated Breakthrough Curves (Circles represent concentration measurement 
locations, and triangles dispersivity measurement location. Five concentration 
measurements were made at each concentration measurement locations. 1 aLH 15 
C implies 1 dispersivity and 15 (3 locations X 5 valuedeach location) 
Concentration values, etc.). 
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(a) True Log Kd Field (b) Estimates with 1 Kd and 45 C Measurements 
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(c) Estimates with 9 Kd and 5 C Measurements 
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(d) Estimates with 9 Kd and 45 C Measurements 
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Figure 5.27 Estimation of Random Freundlich Isotherm K, with Underlying Correlation 
Length = 4m: True and Estimated Log Kd Fields (Circles represent concentration 
measurement locations, and triangles K,, measurement locations. Five concentration 
measurements were made at each concentration measurement location. 1 K,, 45 C 
implies 1 Kd and 45 (9 locations x 5 valuedeach location) Concentration values, 
etc.) . 
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(a) 1 Kd and 45 C Measurements 
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Figure 5.28 Estimation of Random Freundlich Isotherm I(d with Underlying Correlation 
Length=4m: Standard Deviations Associated with Log I(d Estimates (Circles 
represent concentration measurement locations, and triangles I(d measurement 
locations. Five concentration measurements were made at each concentration 
measurement location. 1 Kd 45 C implies 1 I(d and 45 (9 locations x 5 valuedeach 
location) Concentration values, etc.). 
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Figure 5.29 Estimation of Random Freundlich Isotherm K, with Underlying Correlation 
Length=4m: True and Simulated Breakthrough Curves (Circles represent 
concentration measurement locations, and triangles I& measurement locations. Five 
concentration measurements were made at each concentration measurement 
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Figure 5.30 Estimation of Desorption Rate Coefficient with a Linear Trend: True and 
Estimated Dispersivity ad Fields (Circles represent concentration measurement 
locations, and triangles dispersivity measurement location. Five concentration 
measurements were made at each concentration measurement locations. 1 ad 15 C 
implies 1 desorption rate and 15 (3 locations X 5 valuedeach location) 
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I Figure 5.31 Estimation of Desorption Rate Coefficient with a Linear Trend: True and 
Simulated Breakthrough Curves (Circles represent concentration measurement 
locations, and triangles desorption rate measurement location. Five concentration 
measurements were made at each concentration measurement locations. 1 ad 15 C 
implies 1 desorption rate and 15 (3 locations X 5 valuedeach location) 
Concentration values, etc.) 
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(a) Estimates with 9 K, and 36 C Measurements 
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Figure 5.32 Estimation of Spatial Random K, with Underlyding Correlation Length 
= 8m: Estimated Log K, Fields (Circle represent concentration 
measurement locations, and triangles IC,, measurement locations. Five 
concentration measurements were made at each concentration measurement 
location. 9 IC,, 45 C implies 9 IC,, and 45 (9 locations X 5 valuedeach 
location) Concentration values, etc.). 
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(a) 9 K, and 36 C Measurements 
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Figure 5.33 Estimation of Spatial Random K$ with Underlyding Correlation Length 
= 8m: Standard deviations Associated with Estimated Log K,, Fields 
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concentration measurement location. 9 I(d 45 C implies 9 & and 45 (9 
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Figure 5.34 Estimation of Spatial Random K, with Underlying Correlation Length = 4m: 
Simulated Breakthrough Curves (Five concentration measurements were made 
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locations X 5 valuedeach location) Concentration values, etc.). 
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6.0 SITE-SPECIFIC APPLICATION EXAMPLE: FElRNALD SITE 

6.1 INTRODUCTION 

The i3FIvi~VAhi3DF code was q?!ieO tn a local area enclosing the South Plume and the South 
Field areas of the Fernald Site (Figure 6.1). A local model was developed for this area to 
demonstrate the applicability of the DFMlVAM3DF code in identifying transport parameters by 
fitting total uranium concentrations from monitoring wells, extraction wells, and geoprobe data 
from the beginning of 1994 through 1999. Before the DFMIVAM3DF results are discussed, an 
overview of the data fusion modeling approach is given. 

6.2 DATA FUSION MODELING METHODOLOGY 

The DFM combines field data with the flow and transport model in an attempt to estimate 
unknown model parameters. Below are the general steps in the DFM process: 

Physical Model Description: The flow and transport model must be constructed which 
represents site conditions and is consistent with field data. 

Sensitivity Analysis: Prior to applying the DFMNAM3DF code, sensitivity analysis 
should be performed to determine sensitive parameters and to identify potential parameters 
to be estimated. 

Statistical Model Description: 
statistics must be specified. 

The estimated parameters, statistical grid, and prior 

DFMNAM3DF Input: The statistical model information and field data must specified in 
the format given in Appendix A. 

Run DFMNAM3DF 

Error Analysis: The spatial and temporal investigation of data fit errors (residuals) is the 
key to improving the DFMNAM3DF parameter estimates. The parameter estimates must 
be examined to determine whether estimates are reasonable. If the data fit errors are 
acceptable, steps 7 and 8 may be omitted. 

Adjust Physical and Statistical Models: The results of the error analysis may suggest 
improvements in the flow and transport model. Often, changes in the statistical model are 
necessary to improve parameter estimates. 

Go to Step 5 .  

After the above DFM process is complete, Monte Carlo analysis may be performed to estimate 
concentration uncertainty from parameter uncertainty. The DFMNAM3DF Monte Carlo 
procedure is described below. 
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1) Produce multiple Monte Carlo parameter realizations, which are conditional on the 
physical model, prior statistics, and field data. 

2) Run VAM3DF for each Monte Carlo realization. 

For a user-defined output time, DFM/VAM3DF will output the resulting concentration variance, 
maximum concentration histogram, and maximum concentration cumulative distribution function. 

6.3 TOTAL URANIUM CONCENTRATION DATA 

Total uranium concentrations from monitoring-well, extraction-well , and geoprobe data from the 
beginning of 1994 through 1999 were used as calibration targets for DFM/VAM3DF. The South 
Plume and the South Field areas of the Fernald Site contains 68 2000-series wells, 50 3000-series 
wells, 6 4000-series wells, 16 extraction wells, and 34 geoprobe locations. The geoprobe data are 
from 10/23/96 to 5/13/99 while the monitoring well and extraction well data span the simulation 
period 1994-1999. 

6.4 MODEL DESCRIPTION 

6.4.1 Discretization 

A localized model (Figure 6.1) of South Plume and the South Field areas was created by extracting 
information from the existing Phase I site model (HydroGeoLogic, 1998). The local model, with 
38 by 74 cells, was refined to 100 feet in the x-y plane from 125 feet in the site model. In the 
vertical direction, the local model has 14 nodal layers, 12 nodal layers from the site model plus 
2 addition nodal layers for better resolution in (Figure 6.2). 

Two flow fields were constructed. The first flow field included the South Plume extraction wells 
pumping before July 1998 and a second flow field included the remaining extraction and 
reinjection wells turned on after July 1998. Total simulation time was six years from the 
beginning of 1994 through 1999. 

6.4.2 Initial Uranium Concentrations and Boundary Conditions 

Initial uranium concentrations were assumed to be an average of all 1993 sampling data at each 
monitoring well with water quality data in 1993. To create the three-dimensional initial 
concentrations for VAM3DF, the GSLIB geostatistical software (Deutsch and Journal, 1998) was 
utilized. The average 1993 concentrations were kriged onto a grid with 50 by 76 cells with 
100-foot grid spacing and with a uniform 20-foot vertical spacing, slightly bigger than the local 
model grid. The kriging semivariogram model was similar to the model used to krige the 1993 
uranium concentration data in DOE (1994). The kriging results were interpolated onto the local 
model mesh and then written in the VAM3DF input format. Figures 6.3, 6.4 and 6.5 portray the 
kriged average 1993 concentrations for the 2000-, 3000-, and 4000-series wells, respectively (the 
average concentration is posted below the well). 

000093 6-2 HydmCmLogic. Im., 4/6/00 



- 3 0 2 2  

Constant head boundaries on the local model were interpolated from the site model head solution. 
Extraction wells, reinjection wells, and recharge flux were mapped from the Phase I site model 
to the local model. For contaminant transport, mass flux source nodes inside the local model were 
interpolated from the Phase I site transport model. 

6.5 SENSITIVITY ANALYSIS 

6.5.1 Sensitivity Description 

Limited sensitivity analysis was performed to determine the model sensitivity to certain input 
parameters. These results were used to assist in the DFM/VAM3DF modeling. 

A baseline simulation was performed using the transport parameters from the Phase I site model 
(HydroGeoLogic, 1998). Table 6.1 presents the baseline transport parameters. Each sensitivity 
simulation involved changing one input parameter and analyzing differences in overall 
concentration using two-dimensional plume footprints and breakthrough curves at monitoring and 
extraction wells. Sampling, or field information, for each extraction well and monitoring well was 
overlayed on simulated results to determine whether model results are consistent with field 
conditions. For the two-dimensional footprints, the concentrations at approximate initial 
conditions (1 day) and in July 1998 (1,641 days) were contoured with average sampling data 
posted on each plot, representing observed versus simulated conditions. Figures 6.6 and 6.7 
represent the two-dimensional plume footprints at initial conditions and in July 1998 for the 
baseline simulation, respectively. Layer 11 was chosen for initial conditions since the highest 
concentrations reside in this layer. For plots containing July 1998 results, layer 10 was chosen 
since this layer contains more data than any other layer for this sampling date. 

6.5.2 Sensitivity Results 

Sensitivity simulation runs are listed in Table 6.2. Thirteen sensitivity simulations were 
conducted. Results of the simulation runs are presented in Figures 6.8 to 6.20 (see Table 6.2 for 
details). In these figures, concentration distributions at 1,641 days (7/1/98) were obtained from 
layer 11. The sensitivity run 1 (Kd), sensitivity run 2 (Kd without kinetics), sensitivity runs 4 
(chemisorption rate), and sensitivity run 6 (Freundlich exponent) vary significantly from the 
baseline concentrations. In Figure 6.11, increasing the chemisorption rate resulted in lower 
groundwater concentration. A consistency check for the time-step size was conducted in 
sensitivity runs 11 and 12, by approximately doubling and halving the baseline time-step size, 
respectively. Concentration distributions shown in Figure 6.18 (double time-step size) are almost 
identical to the baseline concentration distribution in Figure 6.7, indicating a good degree of self 
consistency and the appropriateness of the chosen time-step size. 

All breakthrough curves are shown for two extraction wells and two monitoring wells in Figures 
6.2 1-6.24. Table 6.3 summarizes the variation from the baseline concentrations for extraction 
wells 31550 and 31560. The variation from the baseline is measured by summing the absolute 
value of the difference in concentration over all time steps. The simulated uranium concentrations 
are most sensitive to the Freundlich exponent, chemisorption rate, and I(d. There is minimal 
sensitivity to changes in the vertical grid refinement, dispersion, effective porosity, upstream 



weighting, and number of time steps. When the kinetic mass transfer was not used in sensitivity 
run 3, variation from the baseline breakthrough curves was small. Preliminary transport 
simulations showed that the baseline concentrations (which uses kinetic mass transfer) can be 
duplicated without kinetic mass transfer if chemisorption is simulated as first-order decay. 

In the breakthrough curve figures, most of the sensitivity runs result in smooth (almost linear) 
breakthrough curves. Since all of the sensitivity runs except sensitivity run 6 (Freundlich 
exponent) involve linear transport simulations, scaling the initial concentrations will shift the 
breakthrough curves up or down without changing their shape. This suggests that initial 
concentrations will have varying degree of impact on the breakthrough curves, depending on the 
magnitude of initial concentration errors. For example, if the initial concentration were scaled up 
to 300 ppb surrounding extraction well 31560, then the baseline simulation would very closely 
mimic the field data (ignoring the short transient response at 10/28/95). 

6.6 STATISTICAL MODEL 

The sensitivity results suggest that the Freundlich exponent, chemisorption rate, I<d, and initial 
concentrations have a significant impact on the simulation of uranium migration. The small-scale 
testing in Section 5.0 shows that direct measurements have a significant influence on the accuracy 
of the DFM/VAM3DF estimates. Section 6.4.2 presented direct measurements of the initial total 
uranium concentrations (1993 average concentrations) while there are no direct measurements of 
the Freundlich exponent and chemisorption rate. The initial concentrations were estimated by 
kriging the 1993 average monitoring well concentrations in Section 6.4.2, but the post-1993 
geoprobe data may contain concentration information not captured by the 1993 monitoring wells. 
This suggests that DFM/VAM3DF should be used to enhance the estimation of the 1993 initial 
concentrations. There are limited site data for &. DFMIVAM3DF was used to estimate I& on 
an MRF. There is little information on the Freundlich exponent and chemisorption rate. 
Sensitivity analysis within the DFM process may be used to study the Freundlich exponent and 
chemisorption rate. 

The geostatistical model for the three-dimensional spatial variation used one hydrostratigraphic 
unit so that the entire model has the same statistical model. The assigned MRF standard deviation 
and correlation lengths are consistent with spatial variability of the 1993 initial concentrations in 
Section 6.4.2. The MRF standard deviation is 0.3 log,,(nano lb/ft3) and the correlation lengths 
are (x, y,  z) = (1000 ft, 1000 ft, 40 ft). The parameter grid has 10 non-uniform nodal layers 
corresponding to 10 layers (out of 14 layers) of the local model VAM3DF grid. Figure 6.25 shows 
a slice of the VAM3DF grid and labels the 10 nodal layers of the parameter grid. The parameter 
grid has the same (x, y) mesh as the VAM3DF numerical grid in Section 6.4.1. The parameter 
grid has 28,120 (38x74~10) nodes. 

6.7 FIELD MEASUREMENTS 

The direct measurements of the initial total uranium concentrations (1993 average concentrations) 
are from Section 6.4.2, Figures 6.3, 6.4, and 6.5. Table 6.4 lists the number of direct 
measurements by well series. 
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In order to limit runtime, a subset of the monitoring wells was used for concentration 
measurements (historical concentration data). The selected monitoring wells were sampled in 
1993 and sampled several times from 1994 to 1999. The 2000- and 3000- series monitoring wells 
that were used for concentration measurements are identified in Figures 6.26 and 6.27, 
respectively. All extraction wells inside the local model were used for concentration 
measurements. All geoprobe data inside the local modei were used as zoiizziitration 
measurements. The extraction wells and geoprobe data that were used for concentration 
measurements are identified in Figures 6.28 and 6.29, respectively. Table 6.5 lists the wells used 
for concentration measurements, and the wells sampled between 1994 and 1999 but not used as 
concentration measurements. The percentages of 2000-series wells, 3000-series wells, and 4000- 
series wells used for concentration measurements were 57 % , 6 1 % , and 33 % , respectively. 

A subset of the monitoring well data and extraction well data was used as concentration 
measurements. To further reduce computational burden, each monitoring well and extraction well 
breakthrough curve was approximated by two control points. The two control points that 
approximate the trend of the breakthrough curve are used as concentration measurements. 
Temporal fluctuations in the observed breakthrough curves were considered to be due to small- 
scale localized heterogeneity and short-term fluctuations in climatologic and hydrologic conditions. 
Only the salient characteristics of the migration of uranium were captured by the model. Table 
6.4 lists the number of concentration measurements by monitoring wells, extraction wells and 
geoprobes. .. 

The prior error standard deviations for the measurements represent the uncertainties or errors in 
the measurements. Since these uncertainties are unknown, initial standard deviations are assigned 
and DFM/VAM3DF is executed. The standard deviations are tuned by performing sensitivities 
on the DFM/VAM3DF data fit error. This requires adjusting the prior error standard deviations 
and running DFM/VAM3DF multiple times. For this investigation, the prior error standard 
deviations were not tuned. The prior error standard deviations for all 109 direct measurements 
of the initial concentrations were assigned an identical value of 0.05 log,,(nano lb/ft3). The prior 
error standard deviations for all 479 concentration measurements were assigned a value of 0.07 
log,,(nano Ib/ft3). 

6.8 DFM/VAM3DF APPLICATION 

6.8.1 Baseline Simulations 

The baseline simulations were performed using the transport parameters from the Phase I site 
model. For the DFM/VAM3DF application, the transport simulation time was 13.5 years from 
the beginning of 1994 through June 2006. Three steady-state flow fields were used with pumping 
from Table 5-1 of the Baseline Remedial Strategy Report (DOE, 1997). The initial uranium 
concentrations were estimated by kriging the 1993 average monitoring well concentrations in 
Section 6.4.2. The uranium source terms were acquired from Fluor Fernald personnel. Figures 
6.30-6.32 show the baseline uranium concentrations in parts per billion for layer 1 1 at I/ 1 /98, 
1/1/02, and 5/1/06, respectively. Layer 11 is in between the 2000-series well and 3000-series well 
horizons. Figure 6.32 shows the simulated 5/1/06 uranium concentrations are slightly above 20 
ppb in layer 11. Figures 6.33-6.35 show the baseline uranium concentrations in parts per billion 
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for layer 13 at 1/1/98, 1/1/02, and 5/1/06, respectively. Layer 13 corresponds to the 2000-series 
well horizon. Figure 6.35 shows the simulated 5/1/06 uranium concentrations are slightly above 
50 ppb in layer 13. 

Two sensitivity simulations were performed based on the sensitivity results in Section 6.5.2. The 
chemisorption rate was decreased from (l/day) and the Freundlich exponent 
was decreased from 1 to 0.5. Figure 6.36 shows the maximum aqueous uranium concentrations 
for the baseline and the two sensitivity runs. The baseline, chemisorption sensitivity run, and 
Freundlich exponent sensitivity run, maximum concentrations at 7/1/06 are: 82 ppb, 128 ppb, and 
26 ppb, respectively. Notice that the maximum concentration curves decrease rapidly when the 
extractionheinjection system changes at 7/1/98 and 1/1/04. Figure 6.37 shows the uranium mass 
in the groundwater, uranium mass absorbed, and uranium mass chemisorbed for the baseline 
simulation. Figures 6.38 and 6.39 show the mass summary for the chemisorption sensitivity run 
and Freundlich exponent sensitivity run, respectively. Notice that decreasing the chemisorption 
rate increased the mass absorbed and decreased the mass chemisorbed. The Freundlich exponent 
sensitivity run resulted in less mass absorbed and less mass chemisorbed. The concentration 
measurements in Section 6.7 were compared with the baseline simulations. Table 6.6 shows the 
residual summary for the baseline, chemisorption sensitivity run, and Freundlich exponent 
sensitivity run. The residual is defined as measured concentration - simulated concentration. The 
chemisorption sensitivity run did not affect the residuals while the Freundlich exponent sensitivity 
run resulted in larger residuals. 

(l/day) to 

6.8.2 Estimation of the 1993 Initial Uranium Concentrations 

Two DFM/VAM3DF simulations estimating log,,(IC) were performed. Each simulation used an 
MRF on the parameter grid with a constant polynomial trend. The prior trend was -4.0 log,, 
(nano lb/ft3) with a prior error standard devation of 0.01 log,, (nano lb/ft3). The MRF standard 
deviation was 0.3 log,, (nano lb/ft3) and correlation lengths were from Section 6.6. The 
simulations used direct measurements and concentration measurements from Section 6.7. The first 
simulation used the baseline parameters while the second simulation used a chemisorption rate of 
10" (l/day). Preliminary simulations showed that DFMIVAM3DF Gauss-Newton would converge 
in two iterations and the second iteration gave slightly improved estimates compared to the first 
iteration estimates. In order to reduce runtimes, only one Gauss-Newton step was used for the 
DFM/VAM3DF simulations. 

The results of IC estimation run 1 for parameter grid layer 5, which corresponds to the 3000-series 
well horizon, are shown in Figure 6.40. Notice that the estimates are similar to the kriged 
monitoring well data in Figure 6.4. Figure 6.41 shows the IC estimation run 1 results for 
parameter grid layer 8, which corresponds to the 2000-series well horizon. Again, the estimates 
are similar to the kriged monitoring well data in Figure 6.3. IC estimation run 2 gave very similar 
estimates. Table 6.7 shows the range of the estimates and Table 6.8 shows the maximum 
concentration and mass summary at 7/1/06. Table 6.9 shows a residual summary. A comparison 
with the baseline simulation residuals in Table 6.6 shows that the DFM/VAM3DF concentration 
measurement residuals are larger. The negative average residual suggests that the DFMNAM3DF 
concentrations are too high. The results may be improved by iterating steps 6) through 8) of the 
DFM process of Section 6.2. 

0000'37 6-6 HydffieoLogic. IN.. 4/6/00 



=-- 3 0 2 2  . .  

6.8.3 Estimation of the Distribution Coefficient 

Three DFM/VAM3DF simulations estimating log,,(&) were performed. Each simulation used 
an MRF on the parameter grid with a simple linear trend (C,+C,x+C,y+C,z). For all three 
simulations, the prior constant trend was -1.5 log,, (lb/ft3) with a prior error standard deviation 
of 1 .O log,, (lb/ft3) and the remaining coefficients had a prior eshiiate of 3.0 !og,, (!b/ft3) m d  2 
prior error standard deviation of 0.05 log,, (lb/ft3). The MRF standard deviation was 0.05 
log,,(lb/ft3) and correlation lengths were from Section 6.6. The simulations used concentration 
measurements only. To reduce computational burden, the VAM3DF transport model was used 
without kinetic mass transfer and chemisorption was simulated as first-order decay (as discussed 
in Section 6.5.2). The first simulation used the initial uranium concentrations from Section 6.4.2. 
The second simulation used the initial concentrations from the IC estimation run 1 and the third 
simulation used the initial concentrations from the IC estimation run 2 and a chemisorption rate 
of (1 /day). Preliminary simulations showed that DFM/VAM3DF Gauss-Newton would 
converge in two iterations and the second iteration gave slightly improved estimates compared to 
the first iteration estimates. In order to reduce run times, only one Gauss-Newton step was used 
for the DFM/VAM3DF simulations. 

The results of & estimation run 1 for parameter grid layer 5 (which corresponds to the 3000-series 
well horizon) are shown in Figure 6.42. Figure 6.43 shows the K,, estimation run 1 results for 
parameter grid layer 8, which corresponds to the 2000-series well horizon. The results of K,, 
estimation run 2 for parameter grid layer 5 are shown in Figure 6.44. Figure 6.45 shows the K,, 
estimation run 2 results for parameter grid layer 8. Notice that Kd estimation run 2 gave higher 
K,,s than K$ estimation run 1. Both estimates have large Kds south of Willey Rd. I(d estimation 
run 3 gave very similar estimates in Figures 6.46 and 6.47. Table 6.7 shows the range of the I(d 
estimates and Table 6.8 shows the maximum concentration and mass summary at 7/1/06. The 
lower chemisorption rate in & estimation run 3 gave a higher maximum concentration. Table 
6.10 shows a residual summary. A comparison with the baseline simulation residuals in Table 6.6 
shows that the DFM/VAM3DF concentration measurement residuals are smaller. Table 6.11 
shows the estimated trend coefficients and Table 6.12 shows the SOS summary. Notice that K,, 
estimation run 1 has the lowest SOS. Figures in Appendix B compare the DFM/VAM3DF results 
with the monitoring-well, extraction-well, and geoprobe concentrations. The results may be 
improved by iterating steps 6) through 8) of the DFM process in Section 6.2. 

6.8.4 Uranium Migration Response to I& Estimates 

In this section, the change in uranium concentrations due to the estimated K,, fields will be 
investigated. Figures 6.48-6.50 show the & estimation run 1 uranium concentrations in parts per 
billion for layer 11 at 1/1/98, 1/1/02, and 5/1/06, respectively. Layer 11 is located between the 
2000-series well and 3000-series well horizons. Figure 6.50 shows the simulated 5/1/06 uranium 
concentrations are above 20 ppb in layer 11. These concentrations are higher than the baseline 
concentrations in Figures 6.30-6.32, since the estimated K, field has areas of high K,. Figures 
6.51-6.53 show the K$ estimation run 1 uranium concentrations in parts per billion for layer 13 
at 1/1/98, 1/1/02, and 5/1/06, respectively. Layer 13 corresponds to the 2000-series well horizon. 
Figure 6.53 shows the simulated 5/1/06 uranium concentrations are slightly above 140 ppb in layer 
13. Again, the concentrations are higher than the baseline concentrations in Figures 6.33-6.35. 
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The K,, estimation run 2 uranium concentrations are shown in Figure 6.54-6.59. The 
concentrations are higher than the K,, estimation run 1 uranium concentrations since the Kg are 
higher and the initial concentrations are higher. K,, estimation run 3 gave very similar uranium 
concentrations as K,, estimation run 2. 

6.8.5 Monte Carlo Analysis 

Monte Carlo analysis was performed to transfer parameter uncertainty to concentration 
uncertainty. This analysis does not account for flow field uncertainties and uranium source 
uncertainties. The DFM/VAM3DF Monte Carlo procedure is given in Section 6.2. For K,, 
estimation run 1, 200 realizations of the K,, field were simulated. The realizations are conditional 
on the local model, prior statistics, and concentration measurements. Figure 6.60 shows the 
Monte Carlo results for I<d estimation run 1. The figure includes a histogram of log,, (K,,) at 
monitoring well 2015, a histogram of maximum concentration at 7/1/06, and the maximum 
concentration cumulative distribution function. The CDF suggests that the median maximum 
concentration is 150 ppb and that there is a 100% chance that the maximum concentration at 
7/1/06 is less than 175 ppb. 

For K, estimation run 2, 200 realizations of the K, field were simulated and 200 realizations of 
the initial concentrations were simulated from IC estimation run 1. The realizations are 
conditional on the local model, prior statistics, and concentration measurements. Figure 6.61 
shows the Monte Carlo results for K,, estimation run 2. The figure includes a histogram of log,, 
(IC) at monitoring well 2015, a histogram of log,, (K,) at monitoring well 2015, a histogram of 
maximum concentration at 7/ 1 /06, and the maximum concentration cumulative distribution 
function. The CDF suggests that the median maximum concentration is 160 ppb and there is a 
100% chance that the maximum concentration at 7/1/06 is less than 292 ppb. The introduction 
of the initial concentration uncertainties has increased the range of maximum concentrations. 

For K, estimation run 3, 200 realizations of the K, field were simulated and 200 realizations of 
the initial concentrations were simulated from IC estimation run 2. The realizations are 
conditional on the local model, prior statistics, and concentration measurements. Figure 6.62 
shows the Monte Carlo results for K,, estimation run 3. The figure includes a histogram of 
log,,(IC) at monitoring well 2015, a histogram of log,,(K,J at monitoring well 2015, a histogram 
of maximum concentration at 7/ 1/06, and the maximum concentration cumulative distribution 
function. Since the random numbers generator used the same seed as in the K,, estimation run 2 
Monte Carlo analysis, the histograms and CDF have the same shape. The CDF suggests that the 
median maximum concentration is 261 ppb, and that there is a 100% chance that the maximum 
concentration at 7/1/06 is less than 483 ppb. Decreasing the chemisorption rate resulted in higher 
maximum concentrations compared to Kd estimation run 2. 

The concentration variances at 7/1/06 for K,, estimation run 1 are shown in Figure 6.63 and 6.64 
for local model layers 11 and 13, respectively. These variances were derived from simulated 
concentrations using 200 realizations of the K,, field. Notice that the variances are larger in layer 
13. Comparing with simulated concentrations in figures 6.50 and 6053, shows that the largest 
variances occur near the highest uranium concentrations. The concentration variances at 7/ 1/06 
for I(d estimation run 2 are shown in Figures 6.65 and 6.66 for local model layers 11 and 13, 
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respectively. These variances were derived from simulated concentrations using 200 realizations 
of the initial concentrations and I(d field. The variances are larger than Kd estimation run 1 case 
since initial concentration uncertainty was included. A comparison with simulated concentrations 
in Figures 6.56 dn 6.59 shows that the largest variances occur near the highest uranium 
concentration. Figure 6.63 shows low concentration variances near in the reije3ction wells along 
Willey Rd. 

6.8.6 Computational Requirements 

The DFMNAM3DF runtime is dominated by the concentration measurement sensitivity matrix 
computation and the least squares system solution. All DFM/VAM3DF simulations used the 
LSQR solver or the representer method. Table 6.13 shows the CPU usage for each simulation. 
The IC estimation run 2 and Kd estimation run 3 simulations have shorter runtimes since a 300 
MHz Pentium I1 was used. 

6.8.7 DFM/VAM3DF Application Summary 

The DFMNAM3DF software was tested using a site-specific test to: demonstrate that the software 
is functional, show that it is efficient for application to the FEMP, and establish performance 
benchmarks. This test was based on the VAM3DF/GMA model developed in Phase.1. The 
DFMNAM3DF software was used to estimate the 1993 average uranium concentration and the 
spatially varying distribution coefficient in the South Plume and the South Field areas. 
DFMNAM3DF used the baseline flow and transport simulation from Section 6.8.1 to fit selected 
1994-1999 monitoring-well data, extraction-well data, and geoprobe data. 

The first I& estimation provides the best match to the concentration measurements. Future effort 
should include completing steps 6) through 8) of the DFM process of Section 6.2, which are 
designed to improve the DFM/VAM3DF estimates. Monte Carlo analysis was performed to 
transfer parameter uncertainty to concentration uncertainly. The DFM/VAM3DF application 
demonstrates that the software is applicable to the FEMP. 
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Table 6.1 
Parameter Values 

II Soil-solute transport parameter I Value in model 

11 Longitudinal Dispersivity I 100 (ft) 

Transverse Dispersivity 10 (ft.) 

Apparent Molecular Diffusion Coefficient 0 (ft.) 

1 (unitless) Exponent of Freundlich Sorption Isotherm 

Effective Porosity 0.2-0.3 (unitless) 

11 Bulk Density 124.0-1 16.0 (lb/ft3) 

Exponent m for Molecular Diffusion 0 (unitless) 

Vertical Transverse Dispersivity 1 (ft.) 

Vertical Longitudinal Dispersivity 0 (ft.) 

Decay Coefficient 0 (1 /day) 

11 Distribution Coefficient 0.0285 (ft3/lb) 

Desorption Rate Coefficient 0.01 (l/day) 

Chemisorption Rate Coefficient 0.0001 (l/day) 

Precipitation Rate Coefficient 0 (l/day) 

Zeroeth Order Dissolution Rate Constant 0 (nano lb/ft3/day) 
~~ 

Solubility Limit 0 (nano lb/ft3) 
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Table 6.2 
Sensitivity Simulations 

1 Kd 

2 K, (No kinetics) 

3 Kd (No kinetics) 

4 Chemisorption Rate 
Coefficient 

5 Chemisorption Rate 
Coefficient 

6 Freundlich Exponent (n) 

7 Desorption Rate 
Coefficient 

8 Longitudinal/Transverse 
Dispersivities 

0.285 0.0285 Figure 6.8 

0.285 (No kinetics) 0.0285, Kinetics Figure 6.9 
parameters 

0.0285 0.0285, Kinetics Figure 6.10 
(No kinetics) parameters 

0.001 0.0001 Figure 6.11 

0.0000 1 0.0001 Figure 6.12 

0.5 1 Figure 6.13 

0.1 0.01 Figure 6.14 

10/1 100/10 Figure 6.15 

9 Effective Porosity 0.15 0.25 to 0.3 Figure 6.16 

10 Upstream Weighting 0.5 1 Figure 6.17 
Factors in X, Y, Z 
directions 

11 I Number of Time Steps I 17 I 32 I Figure 6.18 

12 I Number of Time Steps I 65 I 32 I Figure 6.19 

13 Vertical Refinement to 16 12 Figure 6.20 
surfaces in model 
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Table 6.3 
Summary of Sensitivity Run Results 

Sensitivity 10 - Upstream Weighting Factor(s) = 0.5 
Sensitivity 11 - Number of Time Steps = 17 
Sensitivity 12 - Number of Time Steps = 65 
Sensitivitv 13 - Refine Vertical Lavers to 16 lavers 

1.03E+01 I 2 I 3.27E+00 I 1 

8.98E+00 I 1 I 3.67E+00 I 2 

Not ranked, performed for self-consistency check 
Not ranked, performed for self-consistency check 

Note: *Rank = 11, most sensitive; rank = 1, least sensitive. 

Table 6.4 
Number of Measurements 

I 46 I 6 I 78 I 60 I 4 I 32 I 305 I 
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Table 6.5 

Concentration 

2014 

2015 

2046 3068 
2047 3069 
2049 3070 
2070 3093 
2093 3095 
2095 3106 
21033 3125 
2106 3128 
2 1063 3385 
2125 3387 
2128 3390 

2166 3396 

2387 3402 

2434 
2544 
2545 3898 
2550 3899 

2897 

2899 
2900 

rotal = 39 

3927 

31550 

31560 
31561 
31562 
31563 
31564 
31565 
31567 
32276 
31566 
32308 
32309 

Told =I6 

4016 

2016 4920 
1 1 

2048 32305 

2065 32307 
21065 3391 
21192 3624 
21 193 3689 
2126 3910 
22299 391 1 
22300 3912 
22301 3916 
22302 3917 
2391 3918 
2394 392 1 

I 2395 I 3922 I 

2401 Total = 19 

2546 
2549 
2553 
2624 
2943 
2944 
2945 
2954 
2955 

Total =29 
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Table 6.6 
Baseline Simulations Residual Summary 

Simulation Concentration Measurement Residuals 
Total 

2000-series wells 3000-series wells 4000-series Extraction Geoprobes 
wells wells 

Avg. RMS Avg. RMS Avg. RMS Avg. RMS Avg. RMS Avg. RMS 

Baseline 0.05 0.40 -0.28 0.57 -0.18 0.27 0.38 0.64 -0.03 0.72 -2.3 0.65 
x l o2  

10" x l o2  
Baseline with a, = 0.005 0.39 -0.32 0.60 -0.23 0.30 0.32 0.60 -0.09 0.72 -7.7 0.65 

Baseline with n = 0.13 0.69 -0.48 0.86 -0.6 0.80 0.37 0.87 -0.13 0.90 -0.1 0.86 
0.5 

Table 6.7 
Range of Values for Estimated Parameters 

Simulation Name Minimum Value Maximum Value 

IC Estimation run 1 2.7 x ppb 3196 ppb 

IC Estimation run 2 2.7 x ppb 3196 ppb 

K, Estimation run 1 0.013 ft3+/lb 0.56 ft3/lb 

Kd Estimation run 2 0.009 ft3/lb 0.97 ft3/lb 
~~ 

I<d Estimation run 3 0.011 ft3/lb 1.33 ft3/lb 

Table 6.8 
Maximum Concentration and Uranium Mass Summary at 7/1/06 

Simulation Name 

L .  

IC Estimation run 1 

IC Estimation run 2 

K, Estimation run 1 

I(d Estimation run 2 

K,, Estimation run 3 

Maxi&m. 
Concentration 

!PPb) 

104 

163 

Mass in Mass Mass 
Groundwater absorbed to chemisorbed 

(pounds) 1 -soil (pounds) (PounW 

171 - 2893 2307 

255 4356 28 

155 I 183 I 10908 I 6940 

259 270 18670 94 

Total 
Mass *' 

(poundk) 

5371 

4639 

2585 1 

1803 1 

19034 
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Table 6.9 
IC Estimation Residual Summary 

~ ~~ 

N n  2 -0.006 0.33 -0.14 0.46 -0.38 0.56 0.18 0.50 -0.12 0.69 -0.09 0.61 

N n  3 -0.05 0.33 -0.17 0.46 -0.42 0.59 0.13 0.49 -0.16 0.70 -0.13 0.61 

Table 6.10 
K, Estimation Residual Summary 



Table 6.11 
Estimated Trend Coefficients 

Simulation Name 

IC Estimation run 1 

IC Estimation run 2 

Constant 
Coefficient X Coefficient Y Coefficient 

-3.8 

-3.8 

K,, Estimation run 1 I -0.92 I -0.14 I -0.16 

Kd Estimation run 2 

K,, Estimation run 3 

-0.98 0.33 -0.32 

-0.90 0.38 -0.33 

Spatial 
Variability 

Simulation Name 

Trend Direct Conc. 
Polynomial Measurement Measurement 

sos sos sos 
450.0 1222.8 49552.7 

450.0 1222.8 51477.5 

20.1 35022.5 

IC Estimation run 1 I 13880.9 

Total SOS 

65106.4 

6703 1.2 

36747.0 

IC Estimation run 2 I 13881.0 

K,, Estimation run 3 

Kd Estimation run 1 I 1704.4 

4064.8 

K, Estimation run 2 I 3660.5 

103.5 36495.1 40663.4 

Z Coefficient 

0.06 

0.03 

0.01 

Table 6.12 
Sum-of-Squares Summary 

85.6 I I 35776.9 I 39523.0 11 
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Table 6.13 
CPU Usage 
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Site Model vs. Local Model Area 
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Figure 6.1 Regional and Local Model Domains. 
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Vertical Cross-section of Site Model Grid 
Showing Additional Nodal Layers in Local Model 
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Figure 6.2 Vertical Cross-section of Site Model Grid Showing Additional Nodal 
Layers in Local Model 
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Figure 6.3 Average Uranium Concentrations for 2000 wells in 1993 Used for Initial 
Conditions. 
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Figure 6.4 Average Uranium Concentrations for 3000 wells in 1993 Used for Initial 
Conditions. 
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Figure 6.5 Average Uranium Concentrations for 4000 wells in 1993 Used for Initial 
Conditions. 
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Figure 6.6 Baseline Conditions for Time = 1 day. 
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Figure 6.7 Baseline Conditions for Time = 1641 days. 
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Observed vs. Simulated Concentration 
Sensitivity 1 -- Md=Q.29 
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Figure 6.8 Sensitivity Simulation 1 at Time = 1641 days. 
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Figure 6.9 Sensitivity Simulation 2 at Time = 1641 days. 

ObservedData 
Simulation Time = 1657 days 

I I l l  I I I 
/ 

1 E+06 1.352E+06 

000117 6-26 HydroGeoLogic. Inc.. 4/6/00 



7 - 3 0 2 2  

478000 

477500 

477000 

E 476500 
Y 

0 c .- e 476000 
0 z 

475500 

475000 

474500 

474000 

Observed vs. Simulated Concentration 
Sensitivity 3 -- Kd=0.029 with no Kinetics 

Concentration 
ppb 

1000 
700 
500 
300 
100 
50 
10 
1 

ObservedData 
Simulation Time = 1657 days 

1.348E+06 1.349E+06 1.35E+06 1.351 E+06 1.352E+06 
Easting (ft) 

Figure 6.10 Sensitivity Simulation 3 at Time = 1641 days. 

F:\Projcca\R03-00.372-6.wpd 6-27 
0001118 

HydroGeologic. IN. .  4/6/00 



Observed vs. Simulated Concentration 
Sensitivity 4 -- Chemisorption Rate Coefficient = 0.001 
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Figure 6.11 Sensitivity Simulation 4 at Time = 1641 days. 
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Observed vs. Simulated Concentration 
Sensitivity 5 -- Chemisorption Rate Coefficient = 2.00001 
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Figure 6.12 Sensitivity Simulation 5 at Time = 1641 days. 
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Observed vs. Simulated Concentration 
Sensitivity 6 -- Freundlich Exponent=O.5 
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Figure 6.13 Sensitivity Simulation 6 at Time = 1641 days. 
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Observed vs. Simulated Concentration 
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Figure 6.14 Sensitivity Simulation 7 at Time = 1641 days. 
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Observed vs. Simulated Concentration 
Sensitivity 8 -- LongitudinaVTransverse Dispersion = 10/1 
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Figure 6.15 Sensitivity Simulation 8 at Time = 1641 days. 
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Figure 6.16 Sensitivity Simulation 9 at Time = 1641 days. 
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Figure 6.17 Sensitivity Simulation 10 at Time = 1641 days. 
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Observed vs. Simulated Concentration 
Sensitivity 1 1 -- Number 0% Time Steps = 17 
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Figure 6.18 Sensitivity Simulation 11 at Time = 1641 days. 
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Figure 6.19 Sensitivity Simulation 12 at Time = 1641 days. 
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Observed vs. Simulated Concentration 
Vertical Refinement to 16 layers 
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Figure 6.20 Sensitivity Simulation 13 (changing Vertical Discretization) at Time = 1641 
days. 
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Figure 6.21 Breakthrough Curves at Extraction Well 31550 
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Figure 6.22 Breakthrough Curves at Extraction Well 31560. 
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Figure 6.23 Breakthrough Curves at Monitoring Well 2049. 
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Figure 6.24 Breakthrough Curves at Monitoring Well 2125. 
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Figure 6.25 Slice of the VAM3DF Parameter Grid. 
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Figure 6.27 3000 Series Monitoring Wells. 
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Figure 6.30 Baseline Concentrations for Layer 11 at 1/1/98. 
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Baseline Concentrations for Layer 1 1 at 1 /I /02 
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Figure 6.31 Baseline Concentrations for Layer 11 at 1/1/02. 
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Baseline Concentrations for Layer 11 at 5/1/06 
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Figure 6.32 Baseline Concentrations for Layer 11 at 5/1/06. 
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Baseline Concentrations for Layer 1 3 at 1 /I /98 
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Figure 6.33 Baseline Concentrations for Layer 13 at 1/1/98. 
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Baseline Concentrations for Layer 13 at 1 /I 102 
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Figure 6.34 Baseline Concentrations for Layer 13 at 1/1/02. 
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Baseline Concentrations for Layer 13 at 511 /06 
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Figure 6.35 Baseline Concentrations for Layer 13 at 5/1/06. 
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Figure 6.37 Baseline Transport Simulation Uranium Mass Summary. Cw = 
Aqueous Mass, Cs = Mass Sorbed in solid Phase, and Cc = 
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Figure 6.38 Baseline Simulation Uranium Mass Summary with a, = lo6. (See Figure 
6.37 caption for nomenclature). 

F:\Projccu\R03-00.372-6.wpd 6-55 800%4*6 
HydroGeoLogic. Inc.. 4/6/00 



500 

400 

300 

200 

100 

0 

Baseline Simulation Mass Summary with Freundlich exp. = 0.5 

Cw Mass 
Cs Mass 
Cc Mass 

_ _ - -  
- - - - - - - 

Year 

Figure 6.39 Baseline Simulation Uranium Mass Summary with Freundlich exp. = 
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DFMNAM3DF Estimates of Initial Conditions -- Model Layer 5 
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Figure 6.40 IC Estimation Run 1 -- Model Layer 5. 
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DFMNAM3DF Estimates of Initial Conditions -- Model Layer 8 
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Figure 6.41 IC Estimation Run 1 -- Model Layer 8. 
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DFMNAM3DF Estimates of K, -- Model Layer 5 
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Figure 6.42 K, Estimation Run 1 -- Model Layer 5. 
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Figure 6.43 K, Estimation Run 1 -- Model Layer 8. 
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Figure 6.44 K, Estimation Run 2 -- Model Layer 5. 
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DFMNAM3DF Estimates of K, -- Model Layer 8 
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Figure 6.45 K, Estimation Run 2 -- Model Layer 8. 
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DFMIVAM3DF Estimates of K, -- Model Layer 5 
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Figure 6.46 K, Estimation Run 3 -- Model Layer 5. 
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DFMNAM3DF Estimates of K, -- Model Layer 8 
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Figure 6.47 K, Estimation Run 3 -- Model Layer 8. 
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K, Estimation #I Concentrations for Layer 1 1 at 1 /I /98 
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Figure 6.48 K, Estimation Run 1 Concentrations for Layer 11 at 1/1/98. 
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Kd Estimation #I Concentrations for Layer 1 1 at 1 /I /02 
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Figure 6.49 K, Estimation Run 1 Concentrations for Layer 11 at 1/1/02. 
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K, Estimation #I Concentrations for Layer 1 1 at 5/1/06 
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Figure 6.50 K, Estimation Run 1 Concentrations for Layer 11 at 5/1/06. 
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K 478000 

477000 

,476000 
If: 
m 
E 
p75000  
0 z 

U 

474000 

473000 

472000 

1346000 1348000 1350000 
Easting (ft) 

- 
1352000 1354000 

Figure 6.51 K, Estimation Run 1 Concentrations for Layer 13 at 1/1/98. 
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Figure 6.52 K, Estimation Run 1 Concentrations for Layer 13 at 1/1/02. 
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Figure 6.53 K, Estimation Run 1 Concentrations for Layer 13 at 5/1/06. 
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Figure 6.54 K, Estimation Run 2 Concentrations for Layer 11 at 1/1/98. 
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K, Estimation #2 Concentrations for Layer 11 at 1/1/02 
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Figure 6.55 K, Estimation Run 2 Concentrations for Layer 11 at 1/1/02. 
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K, Estimation #2 Concentrations for Layer 1 1 at 5/1/06 
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Figure 6.56 K, Estimation Run 2 Concentrations for Layer 11 at 5/1/06. 
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Figure 6.57 K, Estimation Run 2 Concentrations for Layer 13 at 1/1/98. 
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Figure 6.58 K, Estimation Run 2 Concentrations for Layer 13 at 1/1/02. 
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Figure 6.59 K, Estimation Run 2 Concentrations for Layer 13 at 5/1/06. 
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log,,(K,,) Histogram at Well 2015 
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Figure 6.60 Monte Carlo Results for K, Estimation Run 1 (200 Realization). 
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Figure 6.61 Monte Carlo Results for K, Estimation Run 2 (200 Realizations). 
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Figure 6.62 Monte Carlo Results for K, Estimation Run 3(200 Realizations). 
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Variance of Concentration at 7/1/06 -- Model Layer 11 
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Figure 6.63 K, Estimation Run 1, Variance of Concentration at 7/1/06 -- Model 
Layer 11. 
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Variance of Concentration at 711 106 -- Model Layer 13 
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Figure 6.64 K, Estimation Run 1, Variance of Concentration at 7/1/06 -- Model 
Layer 13. 
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Variance of Concentration at 7/1/06 -- Model Layer 11 
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Figure 6.65 K, Estimation Run 2, Variance of Concentration at 7/1/06 -- Model 
Layer 11. 
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Variance of Concentration at 711 106 -- Model Layer 13 
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Figure 6.66 K, Estimation Run 2, Variance of Concentration at 7/1/06 -- Model 
Layer 11. 
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7.0 SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

7.1 SUMMARY AND CONCLUSIONS 

This document presents the sohcirtre capabilities, input/output specification and test results for the 
DFM/VAM3DF software. The software provides the basis for model predictions and qiiantifizd 
uncertainties that will be used in the tools developed in Phase I11 to optimize monitoring and 
remediation. 

The DFMNAM3DF software combines information from solute concentration time histories, the 
VAM3DF transport model, geostatistical variability, and prior knowledge of parameter 
values/distributions. The software computes parameter estimates and model predictions and 
quantifies uncertainty in terms of estimate and prediction error covariances. 

Testing and performance benchmarking has been performed to demonstrate the software 
functionality and to show that it can be efficiently applied to future groundwater remediation effort 
as part of the FEMP. 

The testing was divided into two phases: small-scale testing; site-specific testing. Small-scale tests 
were first performed to verify DFM/VAM3DF and demonstrate the software functionality. The 
small-scale tests demonstrated that the DFMIVAM3DF software can provide estimates for the 
following parameters: 

0 Kinetic mass transfer parameters; 
0 Effective porosity; 
0 

0 Dispersivities . 
Initial uranium solute concentration; and 

A site-specific test of the DFM/VAM3DF software was conducted to demonstrate the software 
applicability to the FEMP, and to establish performance benchmarks. This test was based on the 
VAM3DF/GMA model developed in Phase I. The DFM/VAM3DF software was used to estimate 
1993 average uranium concentration and the spatially varying distribution coefficient in the South 
Plume and the South Field areas. DFM/VAM3DF used the baseline flow and transport 
simulation from Section 6.3.1 to fit selected 1994-1999 monitoring well data, extraction well data, 
and geoprobe data. Estimating logl0(Kd) provides the best match to 479 concentration 
measurements. The site-specific parameters identification work was carried out for demonstration 
and benchmarking purposes only. The results reported herein should be considered preliminary. 

7.2 RECOMMENDATIONS 

Based on the results of the DFM/VAM3DF tests, the following future enhancements are 
recommended : 

0 Additional investigation is needed to improve the model. Specifically, the statistical 
parameters must be adjusted and the areas with large residuals' should be 
investigated. 
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All significant stresses and climatological periods should be simulated to further 
improve the model. The DFM/VAM3DF software has the capability to use a 
sequence of steady state flow models. 

Laboratory and, if possible, field investigations should be conducted to determine 
kinetic mass transfer parameters, especially the chemisorption rate coefficient, for 
which there are no direct measurements available. 

7-2 
000274;; 

HydroCeoLogic. Inc.. 4/6/00 



8.0 REFERENCES 

Bennett, A .F., Inverse Methods in Physical Oceanography, Cambridge University Press 
Cambridge, 1992. 

Bertsekas, D .P., Constrained Optimization and Lagrange Multiplier Methods, Academic Press, 
New York, 1982. 

I 

I Bierman, G. J., Factorization Methods for Discrete Sequential Estimation, Academic Press, New 
York, 1977. 

Carrera, J., A. Medina, C. Axness, and T. Zimmerman, “Formulations and Computational Issues 
of the Inversion of Random Fields,” from G. Dagan and S.P. Neuman, Subsurface Flow 
and Transport: A Stochastic Approach, International Hydrology Series, Cambridge 
University Press, Cambridge, 1977. 

Dempster, A.P., N.M. Laird, and D.B. Rubin, “Maximum Likelihood from Incomplete Data via 
the EM Algorithm,” Journal of the Royal Statistical Society, Ser. B.39 (l), 1-22, 1977. 

Deutsch, C.V., and A.G. Journel, GSLIB Geostatistical Software Librarv and User’s Guide, 
Oxford University Press, New York, 1992. 

Duncan, D.B. and S.D. Horn, “Linear Dynamic Recursive Estimation from the Viewpoint of 
Regression Analysis,” Journal of the American Statistical Association, 67 (340), 8 15-821, 
1972. 

Gill, P.E., W. Murray and M.H. Wright, Practical Optimization, Academic Press, New York, 
1981. 

HydroGeoLogic, Inc., 1998, Development and Verification of VAM3DF, A Numerical Flow and 
Transport Modeling Code, Herndon, VA. 

Jazwinski, A.H., Stochastic Processes and Filtering Theory, Academic Press, New York, 1970. 

Kitanidis, P.K., “Comments on “A Reassessment of the Groundwater Inverse Problem” by D. 
McLaughlin and L.R. Townley,” Water Resources Research, Vol. 33, No.9, pp. 2199- 
2202, September 1997. 

Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems, Prentice Hall, Englewood 
Cliffs, NJ, 1974. 

Levy, L.J. and D. W. Porter, “Large-Scale System Performance Prediction with Confidence from 
Limited Field Testing Using Parameter Identification, ” the Johns Hopkins APL Technical 
Digest, 13 (2), 300-308, 1992. 

OOQZ7’7 
‘ ’ ?  ‘ * I t  

8-1 HydroCeoLogic. Inc.. 4/6/00 



McLaughlin, D. and L.R. Townley, “A Reassessment of the Groundwater Inverse Problem,” 
Water Resources Research, Vo1.32, No. 5,  pp.1131-1161, May 1996. 

Paige, C.C. and M.A. Saunders, LSQR. An algorithm for sparse linear equations and sparse 
least squares, ACM Trans. Math. Software, 8 (1982), pp. 43-71. 

Porter, D. W. , ”Multi-Object Tracking Via Recursive Generalized Likelihood Approach, ” 
Proceedings 18Ih IEEE Conference on Decision and Control, December 1979. 

Porter, D.W., B.P. Gibbs, W.F. Jones, P.S. Huyakorn, L.L. Hamm, and G.P. Flach, “Data 
Fusion Modeling for Groundwater Systems,” Journal of Contaminant Hydrology, Vol. 42, 
pp 303-335, March 2000. 

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in 
FORTRAN: The Art of Scientific Commting, Cambridge University Press, Cambridge, 
1992. 

Rao, C. R., Linear Statistical Inference and Its Applications, Wiley, New York, 1973. 

Shumway, R.H. , Amlied Statistical Time Series Analvsis, Prentice Hall, Englewood Cliffs, 1998. 

Snodgrass, M.F. and P.K. Kitanidis, “A Geostatistical Approach to Contaminant Source 
Identification,” Water Resources Research, Vo1.33, No. 4, pp. 537-546, April 1997. 

Sun, N.Z., and W.W.G. Yeh, “A Stochastic Inverse Solution for Transient Groundwater Flow: 
Parameter Identification and Reliability Analysis, ” Water Resources Research, 28 (12), 
3269-3280, 1992. 

U.S. Department of Energy, 1997, Baseline remedial strategy report: Remedial design for aquifer 
restoration (Task 1),  Fernald Environmental Management Project, DOE, Fernald Area 
Office, Cincinnati, OH. 

U.S. Department of Energy, 1994, SWIFT Great Miami Aquifer model - summary of 
improvements, report, Fernald Environmental Management Project, DOE, Fernald Area 
Office, Cincinnati, OH. 

Vandergraft, J. S. ,  “Efficient Optimization Methods for Maximum Likelihood Parameter 
Estimation, ” Proceedings of 24‘h Conference on Decision and Control, Ft. Lauderdale, 
1985. 

Whittle, P., “On Stationary Processes in the Plane,” Biometrika, Vol. 41, 434-449, 1954. 

Yucel, Z.T. and R.H. Shumway, “A Spectral Approach to Estimation and Smoothing of 
Continuous Spatial Processes,’’ Stochastic Hydrology and Hydraulics, Vol. 10, pp. 107- 
126, 1996. 

8-2 O Q Q 1 7 8  
F:\Projccu\R03-00.372-6.wpd HydroGcoLogic. Inc.. 4/6/00 



; 3 0 2 2  

APPENDIX A 

EXAMPLES OF INPUT FILES 
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APPENDIX A 

All keywords are upper case and left justified. 
Remaining input is free format unless specified otherwise. 
tu* A l l  ~ ~ ~ r i ~ h l e s  . u----,.. starting - with 'it, )', 'k, 'l', 'm' or 'n' integers and all remaining variables are real numbers. 
Input Format: 
XGRID #Keyword 
nxg 
nx(i) delx(i) 

YGRID #Keyword 
nyg 
ny(i) dely(i) 

ZGRID #Keyword (optional) 
nzg 
nz(i) delz(i) 

ZGRID3D 
nnz 
(((zgrid(ij ,k),i= 1 ,nnx),j= 1 ,nny),k=l ,nnz) 

Comments (not part of input); 

#number of X subdivisions groups 
#number of X subdivisions in ith group, width of each X subdivision 
#the above line is specified for I=l,nxg 

#number of Y subdivisions groups 
#number of Y subdivisions in ith group, width of each Y subdivision 
#the above line is specified for 1=1 ,nyg 

#number of Z subdivisions groups 
#number of Z subdivisions in ith group, width of each Z subdivision 
#the above line is specified for I=l,nzg 
#Keyword (use only if ZGRID is not used) 
#number of nodal planes in 3D mesh 

#where nnx is the number of x-direction nodes and nny is the 
#number of y-direction nodes 
#Keyword Transformation from VAM3DF grid to parameter grid SITE2MODEL 

xoff yoff zoff angle scale 
NRFNTRD #Keyword 
nrf ntrd #number of parameters estimated by a random field with a 

#polynomial trend and number of parameters estimated by a 
#polynomial trend 
#Keyword list of parameters to be estimated 
#format('(a8)'), parameter label for 1=1 ,(nrf+ntrd) 
#with nrf parameters first 
#(POROSlTY,KD,IC,ALPHA-D,ALPHA-LH, ALPHA-TH, ALPHA-LV, 
ALPH A-TV) 

#scale FIELDDATA and CONCDATA conc. data to match 
#VAM3DF units (Le. ugh, to nanolblft"3) 

#number of field data subdivisions groups 

PARAMS 
paramlabel(i) 

SC ALECONC #Keyword 
scalec 

FIELDDATA #Keyword direct measurements 
nfdg 
nfd(1) nfd(2) .. nfd(nfdg)#number of field data in each of the nfdg subdivisions 
nparam x y z fd sigma #nparam is the parameter number in the set { 1,2,. . .,(nrf+ntrd)} 

#x,y,z are the VAM3DF grid coordinates of the measurement 
#fd is the direct measurement of parameter number nparam 
#sigma is the prior standard deviation of the error in the 
#measurement 
#the above input line is specified for each subdivision of each group 

NSCREENPTS #Keyword (optional but before CONCDATA) 000188 
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nwspts #number of well screen integration points 
CONCDATA #Keyword (optional) Concentration measurements 
ncdg 
ncd(1) ncd(2) .. ncd(ncdg)#number of conc. data in each of the ncdg subdivisions 
x,y,ztop,zbot,t,cd,sigma 

#number of conc. data subdivisions groups 

#x,y are the VAM3DF grid coordinates of the measurement 
#ztop and zbot are the top and bottom of the screen in 
#VAM3DF grid coordinates 
#t is the time of the measurement 
#cd is the log10 of the conc. measurement 
#sigma is the prior standard deviation of the error in the 
#measurement 
#the above input line is specified for each subdivision of each group 

# number of vertically isolated units for parameter #i 
#lower layer number and upper layer number for the jth unit 
#for parameter #i 
#the above input line is specified for j=1, nunits(i) 
#(put HYDROUNITS with largest number of units first) 
#Keyword for i= 1, (nrf+ntrd) corresponding with HYDROUNITS 

#s is the spatial variability standard deviation for the jth 
#unit for parameter #i 
#tx is the x-direction correlation distance for the jth 
#unit for parameter #i 
#ty is the x-direction correlation distance for the jth 
#unit for parameter #i 
#tz is the x-direction correlation distance for the jth 
#unit for parameter #i 
#Keyword for i=l , (nrf+ntrd) corresponding with HYDROUNITS 
#number of trend polynomial coefficients for parameter #i 
#prior est. and prior error standard deviation for the kth 
#coefficient for the jth unit for parameter #i 
#the above input line is specified for k=l, nt(i) 

#data editing threshold, large for no editing of data 

#equal to 'DIRECT' for direct method 
#equal to 'LSQR' for lsqr solver 
#equal to 'REPM' for representer method 

NITER #Keyword(optional, if NITER is not given, then nite-8) 
niter #max. Gauss-Newton iterations allowed 
CONVTEST #Keyword(optional, if CONVTEST is not given, then conv=0.2) 
conv #Gauss-Newton iteration convergence criterion 
COVARIANCE #Keyword (optional) for covariance output 
nct #number of covariance terms 
ic(i) jc(i) #(I,J) for ist covariance term 

#the above input line is specified for i=l, nct 

HYDROUNITSi #Keyword for i=l, (nrf+ntrd) 
nunits(i) 
layl(i,j) lay2(i,j) 

VARIOGRAMi 
s(i,j) tx(i,j) ty(i,j> tz(i,j> 

TRENDi 
nt(i) 
pv(i,j,k) ps(i,j,k) 

EDITTHRES #Keyword 
thres 
SOLVER #Keyword 
stext 
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MONTECARLO 
nr iseed 
HISTOGRAM#Keyword (optional) for Monte Carlo histogram plot (must use MONTECARLO) 
nhist nbar 

c: l l l lb \~)  t l f i ( i  \ 

nparam(i) x(i) y(i) z(i)#nparam is the parameter number in the set { 1,2,.. .,(xf+ntrd)) 

#Keyword (optional) for Monte Carlo output (must use REPM) 
#number of Monte Carlo realizations, negative integer seed 

#number of histograms, number of bars in each histogram 
#format(a80), title on histogram plot 

#x,y,z are the VAM3DF grid coordinates of the histogram location 
#the above two input lines are specified for each histogram 
#Keyword (optional) run vam3df for each realizations 
#output statistics at given at time timeout 
#fformat(aSO), binary file name containing realizations 
#the above input line is specified for parameter in 
#the set { 1,2,. . .,(nrf)} 

RESTART #Keyword (optional) for restarting with previous results 
rstname Hormat('(a30)') file name of binary restart file 

#containing current states and J matrix 
EKFUPDATE #Keyword (optional, can not use DIRECT)Extended Kalman Filter 

#update. Use RESTART, if not CONCDATA terms of LHS will 
#be updated before the 1st iteration (first iteration like batch 
#run and subsequent iterations are EKF updates). 
#Keyword (optional) Concentration measurements for EKF update 
#number of conc. data subdivisions groups 

MONTECRUN 
timeout 
filename(i) 

CONCDATAE 
ncdg 
ncd( 1) ncd(2) .. ncd(ncdg)#number of conc. data in each of the ncdg subdivisions 
x,y,ztop,zbot,t,cd,sigma #x,y are the VAM3DF grid coordinates of the measurement 

#ztop and zbot are the top and bottom of the screen in 
#VAM3DF grid coordinates 
#t is the time of the measurement 
#cd is the log10 of the conc. measurement 
#sigma is the prior standard deviation of the error in the 
#measurement 
#the above input line is specified for each subdivision of each group 
#Note: Add new field data to FIELDDATA 
#Keyword (optional) when estimating IC, this option will 
#write the tecplot file debug.tec containing the VAM3DF 
#initial conditions. 
#Keyword (optional) chemsorption for linear Kd, 
#1 st order decay becomes chemsorption by setting 
#lst order decay = alpha-c/( 1.0 + (poro*Sw/r-bKd)). 
#This option applies when estimation Kd. 

DEB JG 

CHEM4LINRKD 
Alpha-c 
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SAMPLE INPUT 

XGRID 
1 
26 100.0 
YGRID 
1 
16 100.0 
ZGRID 
1 
10 10.0 
ZGRID3D 
2 
131.2 133.5 
SITE2MODEL 
573750.0 836850.0 
NRFNTRD 
2 2  
PARAMS 
KD 
POROSITY 
ALPHA-D 
ALPHA-LH 

#Keyword 
#number of X subdivisions groups 
#number of X subdivisions, width of each X subdivision 
#Keyword 
#number of Y subdivisions groups 
#number of Y subdivisions, width of each Y subdivision 
#Keyword or ZGRID3D 
#number of Z subdivisions groups 
#number of Z subdivisions, width of each Z subdivision 
#Keyword or ZGRlD 
#number of nodal planes (nnz) in 3D mesh 
#free format read(((zgrid(I,j,k),I=l ,nnx)j=l ,nny),k= 1 ,nnz) 
#Keyword Transformation from transport grid to statistical grid 

#Keyword number of parameters with random field and trend 
#and number of parameters with polynomial trend 
#Keyword 
#Parameter to be estimated(POROSlTY,KD,IC,ALPHA-D,ALPHA-LH) 
#number of parameters listed = NRF + NTRD with 
#NRF parameters first 

280.0 0.0 1 .O #xoff,yoff,zoff,angle,scale 

SCALECONC#Keyword scale FIELDDATA and CONCDATA conc. data to match 
62.43 
FIELDDATA #Keyword (optional) 
2 
1 1  
1 574675.10 837828.60 310.0 1.1 139 0.01 #para#,x,y,z,fd,sigma (vam coor.) 
4 575083.00 837941.70 3 1 1.1 - 1.7447 0.01 #para#,x,y,z,,fd,sigma 
NSCREENPTS #Keyword (optional but before CONCDATA) 
3 #number of well screen integration points 

CONCDATA #Keyword (optional) 
2 #number of conc. field data subdivisions groups 
1 1  #number of conc. field data in each subdivisions 
572675.10 837728.60 290.0 280.0 3.3 20.1 0.01 

#x,y,ztop,zbot,t,log lO(conc),sigma (vam coor.) 
571083.00 836041.70 301.1 291.1 23.2 1.7 0.01 

#x,y,ztop,zbot,t,log lO(conc),sigma 
HYDROUNITS 1 #Keyword (put HYDROUNITS with largest number of units first) 
2 #number of vertically isolated units for parameter #1 
1 6  #lst unit layers 1-6 
7 11 #2nd unit layers 7-1 1 

HYDROUNITS2 #Keyword 
1 
111  

#VAM3DF units (i.e. u g L  to nanolblft"3) 

#number of field data subdivisions groups 
#number of field data in each subdivisions 

#number of vertically isolated units for parameter #2 
#lst unit layers 1-1 1 

I .  . ,  
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HYDROUNlTS3 #Keyword 
1 
1 1 1  
HYDROUNITS4 #Keyword 
1 
1 1 1  #lst unit layers 1-11 
VARIOGRAM1 #Keyword for parameter #1 
1 .O 300.0 200.0 20.0#sigma, x-correlation, y-correlation ,z-coor for 1st unit 
1 .O 300.0 200.0 20.0#sigma, x-correlation, y-correlation ,z-coor for 2nd unit 
VARIOGRAM2 #Keyword for parameter #2 
1 .O 300.0 200.0 20.0#sigma, x-correlation, y-correlation ,z-coor for 1st unit 
VARIOGRAh43 #Keyword for parameter #3 
1 .O 300.0 200.0 20.0#sigma, x-correlation, y-correlation ,z-coor for 1 st unit 
VARIOGRAM4 #Keyword for parameter #4 
1 .O 300.0 200.0 20.0 #sigma, x-correlation, y-correlation ,z-coor for 1st unit 
TREND1 #Keyword for parameter #1 
4 
1.0 1.0 
0.0 0.05 
0.0 0.05 
0.0 0.05 

4 
1.0 1.0 
0.0 0.05 
0.0 0.05 
0.0 0.05 
TREND2 #Keyword for parameter #2 
1 
1.0 1.0 

TREND3 #Keyword for parameter #3 
1 
1.0 1.0 

TREND4 #Keyword for parameter #4 
1 
1.0 1.0 

EDITTHRES #Keyword 
10.0 
SOLVER #Keyword put DIRECT on next line for direct solve 
U Q R  
NITER 
3 #max. nonlinear iterations allowed 
CONVTEST #Keyword(optional, if CONVTEST is not given, then CONVTEST=0.2) 

0. l#nonlinear iteration convergence criterion 
COVARIANCE #Keyword (optional) for covariance output 
3 #number of covariance terms 
1 1  #(I,J) for 1st covariance term 
2 2  #(I,J) for 2nd covariance term 

#number of vertically isolated units for parameter #3 
#lst unit layers 1-1 1 

#number of vertically isolated units for parameter #4 

#number of trend coeffients for 1st unit 
#constant term value and sigma 
#x term value and sigma 
#y term value and sigma 
#z term value and sigma 
#number of trend coeffients for 2nd unit 
#constant term value and sigma 
#x term value and sigma 
#y term value and sigma 
#z term value and sigma 

#number of trend coeffients for 1st unit 
#constant term value and sigma 

#number of trend coeffients for 1st unit 
#constant term value and sigma 

#number of trend coeffients for 1st unit 
#constant term value and sigma 

#data editing threshold, large for no editing of data 

#Keyword put U Q R  for lsqr solver, for representer method put REPM 
#Keyword(optional, if NITER is not given, then NITER=8) 

04)0284 
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3 3  
MONTECARLO 
3 -133 
HISTOGRAM#Keyword (optional) for Monte Carlo histogram plot (must use MONTECARLO) 
2 9  

title #1 
1 572675.10 837728.60 290.0 # para#,x,y,z for location of histogram 
title #2 
1 572675.10 837728.60 260.0 # para#,x,y,z for location of histogram 
MONTECRUN #Keyword (optional) run vam3df for realizations 
4545.0 
runl.bin #format(a80), binary file name containing realizations 
RESTART #Keyword (optional) for restarting with previous results 
Restart.bin #file name of binary restart file containing cstat and M-c 
EKFUPDATE #Keyword (optional, can not use DIRECT)Extended Kalman Filter update. 

#use RESTART, if not CONCDATA terms of LHS will be updated before 
#the 1st iteration (first iteration like batch run and subsequent 
#iterations are EKF updates). 

CONCDATAE #Keyword (optional) Note: Add new field data to FIELDDATA 
2 #number of new conc. field data subdivisions groups 
1 1  #number of new conc. field data in each subdivisions 
572675.10 837728.60 290.0 280.0 3.3 20.1 0.01 

#x,y,z,t,log lO(conc),sigma (vam coor.) 
571083.00 836041.70 301.1 291.1 23.2 1.7 0.01 

#x,y,ztop,zbot,t,log lO(conc),sigma 
DEBUG #Keyword (optional) when estimating IC, this option will 

#write the tecplot file debug.tec containing the VAM3DF 
#initial conditions. 
#Keyword (optional) chemsorption for linear Kd, 
#alpha-c, 1 st order decay becomes chemsorption by setting 
#lst order decay = alpha-c/( 1.0 + (poro*Sw/r-bKd)). 

#(I,J) for 3rd covariance term 
#Keyword (optional) for Monte Carlo output (must use REPM) 

#number of Monte Carlo realizations, negative integer seed 

#number of histograms, number of bars in each histogram 
#format(a80), title on histogram plot 

#format(aSO), title on histogram plot 

#output statistics at given time 

CHEM4LINRKD 
0.01 
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APPENDIX B 

BREAKTHROUGH CURVES AND CONCENTRATION PROFILES 
FOR K, ESTIMATION RUNS 
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Figure B-1 Breakthrough Summary for Monitoring Well 2015. 

+Field Data 
+Baseline Simulation 

Control Points 
-,- Kd Estimation #1 

+Kd Estimation #2 
++ Kd Estimation #3 



0 
0 
0 

1000 

100 

10 

1 
811 1/87 12/23/88 5/7/90 9/19/91 1/31/93 6/15/94 10R8/95 311 1/97 7/24/98 12/6/99 4/19/01 

Time (days) 

I Monitoring Well 2095 
Observed vs. Simulated Results 

+Field Data 

+Baseline Simulatior 

Control Points 

+ Kd Estimation #1 

+ Kd Estimation #2 
++ Kd Estimation #3 

Figure B-2 Breakthrough Summary for Monitoring Well 2095. 
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Figure B-3 Breakthrough Summary for Monitoring Well 3095. 
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Figure B-4 Breakthrough Summary for Extraction Well 3924. 
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Figure B-5 Breakthrough Summary for Extraction Well 31565. 
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Figure B-6 Concentration Profile Summary for Geoprobe 2015. 
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Figure B-7 Concentration Profile Summary for Geoprobe 2015. w 
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